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FINAL REPORT

Prof. Tomlinson Fort of the University of Georgia and Dr.
Alfred Hind were engaged on this project from Marchr 1, 1952 to
Auvgust 31, 1952. Prof. Fort was director of the research and
Dr. Hind was hils assistant. Prof. Fort alone has been engag-
ed on this project from Sept. 1, 1952 to Feb. 28, 1953.

Two papers have been made ready fcr publication. The
first 1s entitled:

'‘The Loaded Vibrating Net and Resulting Boumdary-valus
Broblema for a Partial Difference Equation of the
Second Order.'

Thia paper 1s under the aunthorphip of Tomlinson Fort.
Two coples wore sent o the Office of Ordnance Research at Duke
University early in December 1952, and permission asked to
submit the paper for publication in Proceedings of London
Mathematical Soclety.

The secrrd peper is under the authorship of Alfred Hind.
IL beara ovs3outialily the following title:

gonvergence of apnroximate golukdons of the vibrating
mbmn._mm_&_&&&m_gm_i_m

Two coplies have been sent to the 0ffice c¢f Ordnance Re-
search at Duke University and permission asked to submit the
paper to the Proceedings of the American Mathematical Society.

Brief abstracts only will be given of these two papers,
inasmuch as the complete papers are in the hands of the O0ffice
of Ordnance Research at Duke University. These abastracts
will be followed by an equally brief resume of work completed
but not yet readied for publication. It 1s believed that
there 1s ample material for at least one additional paper.
Certain other acattered results have teen obtained and many
leads followed which have not bteen productive. This should
be helpful in further research in this field.

Abatract of Paper Number One

Let there be given a rectangular net composed of elastilc
cords and loaded at the points (1,j) with particles of mass
m4g moving with small vibrations in lines perpendicular to the
plane of the net when at rest. An attempt to determine the
displacement of each particle at time ¢t , leads to a set of
linear different ial equations of the second order. An attemst

to solve these leads one to a consideration of the difference
equation

}

(1) {b(i -1,3)4 1y(i -1, 3)‘; + A (k(i j-—l)AJy(i )- 1'

£y (1,30 = o

subject to apprcpriate boundary conditicns. These are teken
to be

(2) 7(0,3) = y(m+1,3) = v(1,0) = y(1,n41) =

1=1, sae, M, le, 2,..0, ne.
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This 1s tantamownt to assuming the displacement of boundary par-
tiocles to be zero. The considervtion of the above as a char-
aocteristic-value probtlem is ths purpose of the present paper.
The characteristic determinant is the determinant of the co-
officlents of the linear algedbraic equations odbtained by sudbsti-
tuting the points (1,)) and roundary conditions in equation (1).
It 48 proved that the characteristic determinant is symmeiriocal
about 1ts principal dilagonal, that all its roots are reasl and
positive, although some may be multiple, as has boen shown by
examples. The work is carried forward by a kinematical method.
Among other things it 1s proved that there are always at least
m+n-1 distinct roots of the characteristic equaz}on. These
roots are denoted of L, «.., &y, 7- VWhen (= a certain
characteristic function’which is BéHoted by V(1,]) hie at least
4 nodal 1lines on the rectengular lattice.

Abatract of paper no. 2

“wra b Priedrichs and Lewy have shown that under appropri-

€37 wtedartr conuitions a solution of

u(x,y.t-at) _ 1 ta’u x—AX t
() ¢ Ok = 2 133

. 82 u(x,y-Ay, tJ

(Ay)

with a mesh ratio of r;, = r, = 1 will ccnverge te a solution of
the corresponding dirrerentfal equation.

the equation

Afu(x. v-4t) - b? [A; u(x-ax, t)}

(at)? (ax)?

¥ > 0.

to the corresponding solutions of the analagous differential
equation.

The present paper treats equation (3) with % replaced by
%> o_. The method is much moro compact than that employed by
Obrien and lautert in their one dimensional problem and permits
of immedlate extension to the wave equation in n-dimensions.
It 1s proved that for any mesh ratio r, = r, = r o solution of
the difference equation approaches the corresponding solution
of the differentirsl equation.

Thixd topig of reagarech nqQl yot submitted for pyblicatlon.
This work has been concerned with the equation

bjv(1-1, 3) = %{—-B— 8y v(1, 3-1)

subject to the condition that firstly, y Dbe zero on the bown-
dary of a square lying in the first quadrant and,socomdly, that
¥ be zero along the toundary of a neoquadrant of a circle.

The method of attack has been to assume a solution in the form
I(1) J(3). It is then proved that any solution of the problem
over the square 1s a linear combination of products of solutions

i
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of the one dimensional Sturm-Lionville probler. It follows
that all characteristic values are positive. It 4s proved

that no characteristic value i3 of multiplicity greater than
n.

It is proveqnp%%5e§g'utions exist for the neo-quadrantal
problem. However, rno soldtion car pe writieon in the form
I(1) J(J) where I and J are Sturm-Lionvilio functions in
one-dimension.

e s il
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‘E I. Bomogeneous Nucleation of Supercoolel Watecr Drops

Abstract --The experimentally observed cryatallization of
supercooled vater near -L0C is examined in terms of the theory of
bomogeneous nucleation. The thermodynamic and molecular-kinetic
natures of the nucleation process is outlined in order to show why
supercooling in natural clouds can occur 80 freguently, Paot ef-
forts to explain the -4OC transition are examined critically and
are found to contain a number of significant errors. Because the
theoretical nucleation rates are extremely sensitive to the numeri-
cal value of the specific surface free energy of a vater-ice inter-
face, particular attention ic devcoted to the refinement of previ-
ous estimates of this parameter, It is shown that both Krastanow's
and Mason's estimates vere inaccurate, and that in the latter's
approach, neglect of the distortion energy of the surface layer cf
ice led to a marked underestimate of the nucleation efficiency
vhich was concealed by the effects of several counteracting errors.
Difficulties lying in the way of a direct calculation of the dis-
tortion energy for ice are examined and found to be very serious.
A crude correction for distortion effccis leads to a theoretically
predicted teumperature of -26C for the threshold of spontaneous nu-
cleation of drops of cloud-particle size. It 18 concluded that
although this result lies well above the experimentally observed
range of transition temperatures, it is close enough to that range,
considering the inherent dlfficulty of assessing the effect of dis-
tortion, to strengthen the belief that the -LOC transiticn is due
to homogeneous nucleaticn, The implications of this conclusion

for the theory of the aircraft icing process are pointed out
briefly.

1. Introduction

Although a number of years have e2lapsed gince the first clear recognition
(Cvilong, 1945; Schaefer, 1946) that there exists a temperature near -4LOC at
which ice crystals seem to form abundantly and spontenzously in a clcud of
supercooled vwater drops, the exact physical nature of the transition has not
yet been ascertained, Its importance to the sudbjects of cloud physics and
aircraft icing wmakes it desirable to investigate all possible mechanisms which
might account for the phenomenon. Tbe principal division of present opinion
seems to hinge upon the question of whether ihe observed formation of ice
erystals near -4OC occurs as & result of direct sublimation from the vapor
rhase (Cwilong, 1947; Bradley, 1951; Schaefer, 1952) or as a result of spon-

taneous freering of aupercooled water drops (Fisher, Hollomon, and Turnbull,
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1949; Lafargue, 1950; Mason, 1952).

The sublimational hypothesis encounters sericus difficulties on dboth
theoretical and experimental grounds, First, Krastanow (1941) bas shown
thermodynamically that water vapor at temperatures below OC will condense to
the supercocled liguid state in an energetically easier msnner then it will
sublime to the solid state, since the liquid-vapor interfaclal energy is
certainly smaller than the solid-vapor interfacial energy in the temperature
range of meteorological interest., Second, it has been found experimentally
(e.g., Schaefer, 1952) ihat the ice pkase does not make its appearance in
vapor saturated just with respect to ice, but rather in vapor saturated with
respect to liguid water, which implies that formation of ice crystals in the
atmosphere proceeds by some intermediate process involving supercooled 1lig-
uid drops (assuming no fcreign nuclei to be present). A very complete and
critical summary of past studies of this problem has been given by Mascn ard
Ludlam (1951), sc the background of the problem need not be elaborated here.

When one next ingquires as to how a supercooled drop of water might
freeze, two distinct classes of processes must be cunsidered. If the crys-
tallization takes place in entirely pure water, it is said to depend upon
"bomogeneous nucleation"., If the crystallization instead depends critical-
1y upon the presence o7 trace guantities of some foreign substances, it is
saild to involve "heterogeneous nucleation". It has been clearly demonstrated
vithin the past few yeurs that a large numbeir of inorganic salts will pro-
wote heterogeneous nucleation when added to suitably supercooled clouds, and
much effo;t has been directed towards gaining an understanding of the exact

wechanisws involved. In contrast to these experiments, the experiments on
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the -42C transition! seem to indicate that heterogeneous nucleation is not
involved in this phenomenon; so it becomes very desirable to exploit all
available experimental and theoretical wethods for gaining insight into the
problem of homogeneous nucleation of supercooled water. The present paper
summarizes a theoretical study of this latter phenomenon.,

It may be noted at the start that the theoretical expression describ-
ing the rate of homogeneous nucleation is of such matkematical form as to be
extreumely sensitive to the numerical valuee assigned to certain parameters
entering into it. Consequently & major objective of the present study hes
been the careful examination of all quaatities affecting the nucleation ra‘e,
particular effort being devoted to refining such numerical estimates of
these quantities as have been made in the past. In addition, several thermo-
dynamic aspects of the nucleation problem have been investigated and shown
to be in need of revision. After all recognized refinements have been dis-
cussed here, calculations of the nucleation rate will be carried out on the
basis of three independent and disparate estimates of the critically import-
ant surface free energy fcr a water-ice interface.

2. Theory of homogeneous nucleation

One of the principal benefits to be derived from even a gqualitative
study of the theory of hcmogeneous nucleation of supercooled liquids is an
appreciation of the fact that as the temperature of a pure 1liguld substance
ise lowered to end then below the melting point of that substancés solld
phase, a certain degree of supercooling is not only possible, but is in fact
difficul’ to avoid. Thus the well-kncwn and meteorologically important phe-

nomenon of supercooling of cloud drops ought not be regarded by meteorolo-

IﬁlffErent investigators have obseried the transition in question at slightly
different temperatures lying within the range from about -38C to about -L1lC.
Here, for brevity, it will be referred to simply as the "-LOC transition”,
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gists as a paradox demanding some special explanation. Viewed in the light
of the theory of homogeneous nucleation, this phenomenon is seen to be thermo-
dynamically and kinetically inevitable in pure water drops. That it would
really be the opposite case of "well-behaved" freezing at OC which would
demand special explanation if invariably cbserved in the atmosphere does

not appear to be widely appreciated, if one is to juige froa comments on the
paeucmenon of supercooiing to be found in meny meteorology texts. Therefore
it may be in order here to discuss driefly the qualitative nature of this
problem before turning to a quantitative examination,

The supercooling of a pure liquid is quite closely analogous to the
supersaturation of a pure vapor, Since the latter is of conceptual interest
in clowd physics, but particularly since certain quantitative aspects of the
latter are likely to be better known to most readers, the basic physical na-
ture of homogeneous nucleation will be described first in teras of processes
occurring in a supersaturated vapor.

In this latter case, one observes that a vapor wkici countains no inter-
mixed foreign particles and vhich is not in contact with a ligquid water sur-
face of any kind may be cooled far belov its nominal dew point without any
appearance of vater drops. The funjamental resson for this possidbility of
supersaturation of pure vapor 18 that the only way in vhich liquid drops can
be formed under such homogeneous conditions is for a chance succession of
collisions to build up embryonic vater droplets one molecule at 2 time. But
this mode of formation of drops is inherently improbable, even at tempera-
tures vell below the noainal dew pcint of the vapor because (to describe it
in simplified terms) the total binding force exe=ted by very small aggregates

of wmolecules upon one of their surface members is too low to overcome the

—— I S I
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dlsgregative action of thermal motions of the individual members.’ Only by
cooiing the system far below its nominal dewv point can one suppress this
thermal disgregating effect on randomly forming embryos sufficiently to per-
uit the embryos to gain wember molecules faster by bombardment from the va-
por phase than the embryos lose them to the vapor phase by evaporation.
Even from as crude a model as this, one can sense that for any given tem-
perature below the nominal dew point there ought to exist a critical embdryo
radius below which an embryo is unstable and will tend to evaporate, but
above which 1t will tend to grow rapidly. Furthermore, the same model sug-
gests the important relation that the magnitude of this critical radius wmust
surely decreese with decreasing temperature, Both of these conclusions can
be given firm support and, still better, quantitative expression by means
of the corresponding thermodynamic arguments.

One of the main results of the thermodynamic argument is a quite famil-
iar relation, Kelvin's equation., However, the form into which this equation
is almost invariadbly put in meteorological applications, and the correspond-
ing way in which it is interpreted, tend to conceal its interesting impli-
cations as an equation from the theory of homogeneous nucleation. Kelvin's
equation, as conventionally written, relates the vapor tension e. of a pure

vater drop of radius r and temperature T to the vapor tension e of a plane

Pror aggregates containing, say, only a half dozen molecules, the binding
force for any given member molecule may be urnderstood in terms of the small
total number ot other molecules avallable to attract the glven molecule,

For larger azsgregates, the total number of wmembers ceases to be the signif-
fcant para. ‘'r, since it is well established that the range of iatermole-
cular forces is so small as to become genereally negligible over distances

of the order of two or three molecular dlameters. Instead, the deficlency
in binding energy for a surface molecule in an aggregate of, say, a few hun-
dred molecules depends almost entirely on a purely geometric effect due to
the large surface curvature of such tiny aggregates. The curving surface of
the embryo falls away so rapidly on all sides of a given surface wolecule
that there exists a slight deficit of pear-neigthors whose radially inward
components of attraction go to make up a portion of the total binding force
in a perfectly plane liguid surface,.
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surface of pure vater of density f} , specific surface free energy (surface
tension) Uz , and temperature T, ttccordi.ng to

by @r . _= 92 (1)

€ ~ @RTr ’
vhere R' is the gas constant per gram for water vapor. It 1s usually, and
correctly, stated that Kelvin's equation shows how much larger the vapor ten-
sion of a tiny drop is than that of a plane surface of the same liquid at the
same temperature., What is too frequently ignored in meteorological discus-
sions, is that the same equation is equally appropriately regarded as an equa-
tion giving the critical embryo radius &¢s a function of the degree of super-
saturation and hence of the degree of undercooling below the nominal dewpoint.
To bring out the latter interpretation, one may substitute for ln(e./e) from
the integrated form of Clapeyron's equation to get, on expressing it as an

equation to deteruine r, —

r= 2.0 s
&L (T-T) (2)

vhere Iy i the latent heat of vaporization of the liquid and T, is the tem-

perature (greater than T) at which e, corresponds to the saturaticn vapor
pressure, i.e,, T, 1s simply the nominal dew point of the given sample of
supersaturated vapor which is in equilibrium with drops of radius r. Equa-
tion (2), though still essentially Kelvin's equation, tells rather more than
(1), for it defines the radius r that an embryo must just attain to grow
rather than to evaporate in the presence of water vapor which has been under-
cooled isobarically from its nominal dew point T, to its actual temperature
T. Kelvin's familiar but amazing derivation of (1) from consideration of a
capillary column (Eumphreys, 1940) completely conceals this physical inter-
pretation, A more stralghtforward thermcdynamic derivation brings it cut
clearly since r in (1) or (2) is then seen to represert the radius for which
the net free energy change due to addition of molecules to an embryo attains

a maximum., For embryos smaller than this critical size, the free energy in-

o
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crease due to increase of surface area accompanying the addition of more mole-

cules more than canceis the free energy decrease accompanying the phase change.
Hence in this r-range, further growth does not tend to occur "spontaneously"
in the thermodynamic sense, i.e., the process does not involve a net decrease
of Tree energy. For embryos greater than the critical size, the r? depend -
ence of the surface term 1s overpowered by the rd dependence oi the bulk

term and rapid growth ensues spontancously. Viewed in this light, the criti-
cal radius given by (2) 1s that for which the free energy has a staticnsry
value,

To galn a firmer feeling for the homogeneous nucleation process as it
operates in the case of supersaturated vapor, one may use (2) to cowmpute the
actual size of these critical embryos in a particular case. Thus, a sample
of vater vapor vhich has a vapor pressure of 17 mbs is known to be nominally
saturated at 15C, If cooled isvvarically to 5C in the absence of condensa-
tion nuclel and free water surfaces, it attains a relative humidity of about
200 per cent, and (2) reveals that homogeneous nucleation cannot then occur
unless chance collisions build up embryos with radiil of about 17 Angstrom
units. Since this radius is of the order of ten times the molecular radius
of vater, it follows that spontaneous condensation wili not begin unless ag-
gregates of some 10° water molecules are built up. This turns out to be so
very lmprobable at the vapor density and temperuture in question thet the
chance of even one such critical embryo appearing in a volume of many liters
of vapor in a time of wmany minutes is negligible.

The preceding discussion of homogeneous nucleation in a supersaturated
vapor ralses the gquestion of how one predicts the average rate at which em-
bryos of the critical size may form by random molecular processes at a given
degree of undercooling. This question 1s of equal significance in the prcb-

lem under discussion in this psper, namely nucleation of a supercoonled liquid;

80, having outlined the basic features of a typical homogeneous nucleation

s
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process, attention vill now be returned to this problem of primary interest

here., Just as vas true for the case of nucleation of vapor, one can only ex-
pect to find emdbryos (now crystalline embryos) forming in a supercooled lig-
uid as a result of random collision processes; and, again, survival of these
is prejudiced by chance until they can grow to such size that the surface
molecules in the embryonic crystal lattice are bound with energies rather

greater than the average thermal vibrational energy corresponding to the tem-

perature of the ligquid. An equation very similar to (2), namely (5) dbelow,
epecifies the critical crystallite radius for any given degree of supercool-
ing, and the problem 1is to find a theoretical expression frr the rate of
formation of thease critical embryos per unit volume of supercooled liguid as
a function of the degree of supercooling.

Thies prodblem has been solved through the successive efforts of Becker
and Doring (1935), Turnbull and Fisher (1949), and others. An extensive dis-
cussion of the nucleation rate problem (exclusive of the recent and important

contribution of Turndbull and Fisher) way be found in Frenkel (194€); and a

more recent summary hes been given by Bradley (1951). In a liguid supercooied
belov its nominal freezing point T, to an actual temperature T, the rate of
formation of nuclel (critical embryos) per unit volume per unit time 1s
glven by Turnbull and Figher ai.'f\ + F;

J i I‘__K__E.C ("R"T-"

h (3)

vhere J is the specified nucleation rate; n 1s the numter of molecules per !
unit volume in the liguid phase, k is Boltzmann's constant, u 1s Planck's i

constant, A is the free energy of activation for self-diffusion of the lig- !

uild molecules, and F, is the free energy of formation of a nucleus, The con-

e S 4.

tribution to this theoretical equation wmade by Turnbull and Fisher was the ap-
proximate evaluation of the prefactor of the exponentlal in (3) based on the

gquantum statistical iueory of absolute reactlon rates (Glasstone, laidler, j



A W e o A TPt = T

e ey -V

-9.
and Eyring, 1941), It is to be noted that nkT/h 1s not simply the collision

frequency, as vas once thougkt to be true, Very loosely, (3) may be sald to
glve J as the product of a fundamental moiecular (or atomic) rate constant,
nkT/k, multiplied by two fractional probabllity factors rather similar to
Boltzmann factors. The first, exp(-A/kT), cuts down the fundamental rate by
a fraction measuring the rather low probability that any given liquid molecule
will possess at any given instant sufficlent energy to permit it to "break
loose" from the liguid structure and reach an energy state in which it is
free to diffuse from the liguid region onto and into the embryonic lattice
(see Section 9 below). The second factor, exp(-F,/kT), further reduces J by
a factor which measuréa the generally very small probability that random pro-
cesses can succeed in amesaing an embryo of critical size in the face of the
assoclated free energy increase of the system. Clearly, homogeneous nuclea-
tion should be thought of as an intrinsically improbable event, as has been
stressed above in pointing out that the comwmon occurrence of supercooled
cloud drops 18 not really paradoxical at all,

The activation energy for self-diffusion, A, cannot readily be expressed
as a thermodynamic function of more elementary parameters, so its evaluation
will be reserved for Section 9. On the other hand, the free energy increase,

F

c» @ssoclated vwith the formation of an embryo of critical radius (or of

characteristic length r, if one visualizes formation of some other geometric
shape than a sphere) is found from thermodynamic considerations (see, for

example, Frenkel, 1946) to be

E ""’55 (4)

where U, 1s the specific surface free energy of the solid-liguid interface

S
and g 1s & geometric factor such that grce is the total surface area of the

critical embryo. An expression of the form of (4) holds so long 28 edge

energles may be ignored. The critical radius, r,, is given by an equation




R S . S S S R

SISt o

«l0-
snalogous to the Kelvin equation written above as (2) for the correspond ing

case of vapor-liquid nucleation, The form of the rc-oquation given by

Frenkel (1946) is —

r = -é O; /O
- est("l:-T) (5)

vhere (i% is the density of the solid phase and Lf is the latent heat of

fusion of the substance in gquestion., It has been argued qualitatively in the
AMacpasion (7 o7 ~ucleation above that the rate of formation of nuclei
(critical emdryos) increase¢s with increasing degree of supercooling, Super-
ficial inspection of (3) might seem to yield a contradiction to this, for
tke nkT/h prefactor as vell as the factor kT in the exponent both tend to
lower the nucleation rate as the temperature of the supercooled liquid falls.
It is, however, in spite of these factors and because of the sensitive de-
pendence of F, on T, as given by (4) and (5), that J increases rapidly with
decreasing tempersture., Hence spontaneous crystallization does tend to dbe-
come more probable the greater the degree of supercooling. The problem of
cloud physical interest is: Does this probability pass through some sort of
threshold value near -40C such that freezing of drops becomes nearly inevit-
able within perioda of time characteristic of cloud processér? Some past ef-

forts to answer this gquestion will be examined next.

3. Previous cloud physical applications of nucleation theory
The present position of the theoretical investigation of homogeneous nu-

cleation of supercooled water will be summarized in thig section by reviewing

$4

the salient features ot the principul pust studles of tonis prodlezm, In the
course of the present study, significant errors have been found in each of
these., Perhaps the major contribution of the present investigation has
been the detection of end at least partial correction for ihese errors,

Krastanow (1941) sought to apply the theoretical work of Becker and Dor-

ing (1925) und of Volmer (1939) to the meteorological problems of homogeneous

e
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and hetlerogensous nucleation of both supersaturated vapor and supercooled
water. Although he reached conclusions (e.g., energetically greater probda-
bility of condensation than aublimation in vapor below OC) vhose significance
have not alvays received the attention they seem to deserve, he could meke
no definitive calculations because at the time of his writing the rate-factor
appearing in (3) had not yet been adequately evaluated. Krastanov made cer-
tain estimates of A and of 0; vhich vill be discussed below. It appears not
to have been previously noticed that Krastanow falled to take aacount of the
appreciable temperature variation of the latent heat of fusion of water (see
Section 5 below) in his calculations of Og ‘

Fisher, Hollomon, and Turndbull (1949), recognizing that it is very dif-
ficult to deterninetjg by experiment or theoretical calculation, used nu-
cleation theory to work backwards from the observed -LOC transition temper-
ature to compute G; on the assumption that -40OC 1s in fact the tempersture
for which J becomes of the order of unity. For unstated reasons, they omit-
ted A in the nucleation equatior which, as will be pointed out below (Section
9), 1s neither gqualitatively nor quantitatively permissible. Second, they,
like Krastanow, ignored the substantial decrease of Lf vith decreasing tem-
perature., Finally, although they 412 not state explicitly vhat mass of
supercooled vater they viere considering, one can determine this by solving
for their N (the n of the present paper multiplied by the volume considered)
after putting their computed value of (3; , 32,8 erg cm‘a,

o31's into their equation along with all other numericua) values they snecify,
Ons finds in tuis way thai they were tacitly concldering the -hoC (-38C
according to them) transition as occurring wvhen one nucleus forued each second
somevhere within a sample of one gram of supercooled water. This vas a quite
fallacious dasis for the calculation since the temperature at which homogen-
eous nucleation occurs will clearly vary with the maec of iiquid involved,

and uxperimental observations yilelding the -LOC effect concern individual

e ————————————————————
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vatex drops vhose maeses are only of the order of 10'9 gn. Because of these
several errors, no significance can be attributed to their estimate of (5;; .
A corrected calculation of the same type will be made below at the end of
Section 10,

Lafargue (1950) made a rather curious calculation whose results he pre-
sented as proof that the -LOC transition is due to homogeneous nucleation of
supercooled drops. He began by pointing out that x-ray diffraction studies
of the structure of liquid vater have revealed that each oxygen is surround-
ed tetrahedrally by four other nearest-neighbor oxygens at 2.76 Angstroms
and that the seccond-nearest neighbors, twelve in number, lie at a radlal
distance of 4.53 Angstroms, RNext, and withcut further coument, he inserted
T. = 4.53 Angstroms into the Gibbe-Thomson equation (5) along with numerical
values for all gquantities appearing therein except T, and solved for T. Hie
result was -41C, in excellent numerical agreement with Cwilong's (1947) ob-
served value for the transition point. He concluded that this afgument had
demonetrated that the transition must be dependent upon homogeneous nuclea-
tion., For several reasons this argument of lLafargue's cannot be accepted.
Firet, although the fact that the radius of the second sphere of coordina-
ticn in liquid water is about R;S Angstroms is vell established, there is no
good a priori reason why one should insert this particular distance rather
than, say the first or the third, or even some higher order coordination ra-
dius into the Gibbs-Thomson eguation as an alleged critical radius., It 1s an

enpgent '~ feature of the homogeneous nucleation process that r, 13 not a con-
stent, us \uls step of Lafargue's assumes, but 15 instcad & guantity whlch
decreases vith decreasing temperature, Second, for Lafargue to have sought
an explanation of the -4OC transition in terms of an essentially static model
rather than to grapple with the critically important notion of the rate of
nucleation was to ignore the intrinsically kinetic nature of the nucleation

process, namely that at all times there exists a spectrum of rates -f chence
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formation of embryos of various sizes from two molecules on up, eand that
spontaneous crystallization only occurs wvhen the rate of formation of em-
bryos of critical size becomes of the order of one per volume unit end time
unit characteristic of the experiment. Lafargue vas effectively saying that
the ice-like short-range order in supercooled water vaits passively for the
temperature to fall far enough for the local structure to simulate an ice
embryo of size sufficient to satisfy the Gibbs-Thomson relation. This view
ignores the fundamental role played by statistical fluctuations in the nu-
cleation process. Third, Lafargue used the value of L, correspond ing to OC
in a calculation referrirg to -41C. Had he used the value of L, appropriate
to -41C (see Section 5) with all other variebles unchanged, he would have
found a transition temperature or -58C instead of -41C, and the agreement
vith observation would have disappeared. It would seem to follow from these
objections, unfortunately, that the problem of explaining the -kOC transition
was certainly not solved by Lafargue,

A valuable x-ray diffractior study of tbe molecular structure of super-
cooled water (Dorsch and Boyd, 1951), wvhich appears to have been stimulated
in part by Lafargue's paper, reveasled that the peak in the angular intensity
pattern for water at a scattering angle of 18 degrees becomes increasingly
better resolved as the degree of supercooling increases dovn to those inves-
tigators' lower limit of observation of -16C. Since this peak is due to x-
ray scattering by the second sphere of coordination at about 4.5 Angstrom
radius, Dorsch and Boyd concluded that the structure of water does grow in-
creasingly lce-like s supercocling proceeds, 28 suggasted a number of years
ago by Bernal and Fowler (1933). They pointed out that this trend suggests
that at the still greater degree of supercooling prevailing nesr the -LOC
point, the structure of liguid water might be 8o nearly isomorphic with ice

as tc justify Lafargue's disregard of the whole concept of the work of forma-

tion of an ice embryo. However, the work of formation (properly the free
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energy of formation) of a nucleus goes to gero, according to (i) only if 0;
goes to zero; and if isoworphism developed to this extent near -4OC, then
Lafargue's calculation would become invalid for still another reason, since

his result requires a value of 10.5 erg en™?

for (g; « There seems no vay
to Justify Lafargue's epproach.

A still more recent effort to account for the -4OC transition in terms
of homogeneous nucleation is due to Mason (1952). Unlike Krastanow who 4id
not have available the quantum-statistical expression for the rate factor in
the nucleation equation, and unlike lLafargre who way heve been unavare of it,
Mason proceeded from Turnbull and Fisher's equation, (3) above, Finally, un-
lixe Fisher, Hollomon, and Turnbull, he 414 not merely use the equation to
make &n estimate of O; by reasoning backward from the observed -LOC transi-
tion temperature assuming the very thing which the meteorologist seeks to
confirm, Instead, Mason made a direct attack on the problem by estimating
a; on theoretical grounds, and then used this estimated value in (3) to
study the behavior of J.

In eeveral of the followirng sections, a number of refinements of detall
in Mason's treatment will be discussed. Here only one general obJection must
be raised to the basis upon which Mason sought to demorstrate agreement be-
tueen theory and observation. Aware of the inherent uncertainty in his the-
oretical estimate of Og , Mason found that values of ’.)_(_?(_?__T_). vere
less sensitive to uncertainties in Jg than were values of L?,oT tteelf

ant on me only discussed the former in ais paper. On calculating lue values

of thet derivztive neay -LOC, he found 2 nearly tan-f0ld increnss

- e -— - e
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Centigrade degree in that vicinity, and he offered the rapidity of this in-

crease, per se, as the explanation of the experimental observations of a sud-

den transition of supercooled clouds in the neighborhood of -LOC,
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Now a rapid temperature variation in the nucleation rate near -X0C is
certainly necessary to any statistical explanation of the observations, but
it is not by itself sufficlent. One must ask whether the nucleation rate
might not vary just as rapidly at some temperatures other than -40C; a1l
equation (3) yields the ansver that it does. Indeed, near -30C the rate of
formation of nuclei is found, from (3) using Mason's figures, to change by a
factor much greater, 250 per degree; and at -20C it changes by a factor of one
bundred million per degree! Hence the mere ten-fold change per degree near
-40C can certainly not by itself be regarded as implying that tiue neighbor-
hood of -4OC will be a preferred re_.ion for transition. Consequently, it be-
coues logically indispensable to consider not Just the steepness of the tem-
perature variation in the nucleation rate, but also the absolute values of
that rate,

By taking this latter approach, an explanation for the observed phenomena
might have been presented in a rather more convincing form than that chosen by
Mason. A further important modification in approach should then have been to
evaluate the nucleation rates not simply in terms of nucleil per cubic centi-
meter per second but rather in terms of nuclei per drop per second.:3 The
latter is the pertinent rate here since each drop is essentially an isolated
physical system {n the process in question, and if a given drop is to crys-
tallize within a reasonable length of time, t, there must be a h'gh probabil-
ity of at least one nucleus forming somevhere within that drop during the
time t. Failuze o~ tha -urt of Fgher, Hollomon, and Turnbull (1949) to

L
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100K av vae -40C problem in thls wenner has already beenm cilted, A umasure ©
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3Mason bas pointed out (private coumunication) that his original approach was
exactly this one, but that his recognition of the difference in sensitivity
to Ug of J end of 3T/) T led him to discuss only the temperature deriva-
tives. In so doing he apparently overlooked the fallacy of this approach oc-
casioned by the even steeper J-variations at temperatures warwer than -hoc.
And, indeed, & merely large value of & J/ & 1 occurs at -4OC for almost any
helfvay plausible numerical values one may insert into (3).
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’ the average time between nucleation events within each drcp 18 given by the
reciprocal of the nucleation rate per drop, Using the several tentative nu-
merical values suggested by Mason for the paremeters entering into (3), cae
‘ . finds for this "average nucleation time" the values shown in Table 1 for
érops of 1, 5, and 10 micron radii, It is in considering the absolute values
of these tabulated times as well as their rapid temperature variation that

one finds quite nice apparent sgreement between observation and Mason's work,

Table 1. Average time between nucleation events within water drops of

radius r at various temperatures. Revised from Mason (1952).

Temperature r = 1 micron r = 5 microns r = 10 microns
-36C 187 days 32 hours 4.5 hours
37 6.9 days 80 minutes 10 minutes
-38 il hours 5 minutes 4O seconds
-39 42 minutes 20 seconds 2.5 seconds
‘ -ko 5 minutes 2 seconds 0.3 seconds
<41 30 seconds 0.2 seconds 0,03 seconds

In experiments where the supercooling is produced in an adiabatic expan-
sion, the entire nucleation process must occur in times of the order of sec-
ornds (unless the chamber 1s unusually well insulated). Hence the times shown
in Table 1 suggest that no crystals should be observed in a cloud of 4rops

| vhose radii are of the order of microns until the peak expansional cooling
extenis down to near -4OC, but that near that point ths probsbility of nuclese
tica Tinuily rises to a level at which every drop in the 5 - 10 micron range
may be expected to experience a nucleation event within the sensitive time of
tbe chamber. In a natural cloud where the period during which a given drop
exists at a given temperature 1s of the order of minutes, one would expect,
from the implications of Table 1 that spontaneous freezing could occur at a

higher temperature, but oaly a degree or iwo higher because of the extreme
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temperature eensitivity of nucleation., Thus, to emphasize the basic issue
heres, the apparent success of a statistical theory of homogeneous nucle;;ion
is to be assessed not just on the basis of its prediction of a rather steep
ascent of the nucleation probability per drop in the -LOC region, as Mason
tacitly suggested, but much more on the baeis of whether it predicts that
this ascent will in fact carry that probability to values implying that a
majority of drops will be nucleated at least once in the time interval char-
acteristic of the ccoling process involved.h
Judged on both these grounds, the version of Mason's work shown in Table
1 looks nearly perfect. Even the slight spread of the experimentally ob-
served transition temperatures is readily understood in terms of Table 1 if
different observers worked with clouds of slightly different drop-size dis-
tributions, and particularly if the sensitive times of their chambers varied
from fractions of a second to several seconds, Both types of dispersion in
experimental conditions are entirely plausible. The writer's first interest
in nucleation theory was aroused by these implications of Table 1. It is
vith some regret, then, that he must next point out that an extensive study
of the basis of Meson's calculations has uncovered a number of defects which,
vhen removed in the best way recognirzed by the_vriter, destroy the neat
agreement between Table 1 and the experimental observations. The next six
Sections will be devoted to a critical examination of these points and to ef-
forts to improve, in every way possible, the basis of the calculations of the

dropwise nuclsation rates,

bThe calculated rates shown in Table 1 have been given here despite their

nov recognized lack of validity, partly to dccument a logical objection to
Mason's mode of assessing his results, but much more to illustrate, for the
reader not famiilar with nucleation theory, exactly the sort of numerical be-
havior of the dropwise nucleation rates which one would bope to find in
searching for a statistical explanation of the -LOC transition.
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4, The Gibbs-Thomson equation

The theoretical nucleation rate is determined Jointly by (3), (&), end
(5). The writer has been unable to f£ind any basis for modifying (3) or (k),
though (4) will be incomplete if one can demonstrate that edge energies are
being ignored at tte expense of numerical accuracy. The Gibbs-Thomson equa-
tion, {5), however, appears to require a slight change., Mascn followed
Frenkel (1946, p. 415) in using the form (5); but an examination of Frenkel's
derivation of this relation reveals that it is only approximately correct for
such large values of(To - f)ae one encounters in the present problem. From a
thermodynamic argument which need not be reproduced here (Frenkel, 1946, p.
368), one can show that

(2 -V Yap = 20’5"5 a(l/r)

vhere YZ. and YS are the specific volumes of the liguid and solid phases re-
spectively and p is the external pressure on the system. Eliminating

- v_ ) between this equation and the differential form of Clapzyron's

(v
2 'S
equaticn, and integrating between the limite r = r, at T and r =Q0 at Tg =

273K, one gets as a more generally applicable form of the Gibbe-Thomson equa-
tion
’ 2. Og

= oL, tlT/7) (6)

The form (5) given by Frenkel and used by Mason is an approximation to (6)

obtainable by expanding 1n(To/T) into a series and using only the first term,
For cnly very suwsall degrces of supercooling, negligible error is introduced
by using (5); out vhen e here T, - T becomes L0 Centigrade degrees, thers s
about an 8 per cent error in (5), which means about a 16 Ler cent error in
the computed value of F,, and finally a much larger error in J. It may be
well to state here that though this elimination of an error of Yess than 10
per cent in r, represents a rather slight improvement when vievwed against the

large uncertainties which will be ehown to exist in C{g in Section 7, still

1
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1t enters (§) factorially and not additively, and 85 the revision is meaning-
ful, A more concrete measure of the significance of tue replacement of (5)
by (6) is found in the fact that, keeping all other parameters unchanged in
Mason's calculations, this modification raises J by a factor of 10” for drops
at -4OC, and thereby ralses the predicted "spontaneous freezing point" by
about 4 Centigrade degrees, from near -LOC as shown in Table 1 to about -36C.
That 18, the change from (5) to (6) already alters appreciably the sort of
close agreement with observation which made Table 1 seem so promising an ex-

planation of the -LOC transition.

5. Latent heat of fusion of ice

It has been pointed out above that previous investigators of the problem
of houmogeneous nucleation of supercooled water have failed to take account of
the temperature dependence of the latent heat of fusion of ice. It will next
be shown that this overgight has introduced a guite large error into this
previous work, including Mascn's vork as modified in Table 1.

A general thermodynamic relation, eometimes recferred to as Kirchoff's
equation (Glasstons, 1947), relates the isobaric temperature variation of the
latent heat of fusion to the difference in specific heats at constsnt pres-

sure for the 1liqu.d phase, cpl, and the solid phase, Cps)s accord ing to

dls — -
=) = “m Cps (7)
-

For water suustance at 0OC, Cpl X 1 cal gm'l deg‘l vhile Cps A2 0.5 cal gm'l
deg'l, so the latent heat of fusicn of ice decreases with decreasing tempera-
ture at a rats of about 0.5 cal gm‘ldeg'l Just below the melting point., If
this rate held constant down to -4OC, Ly vould decrease to about 60 cal gm-l
at that temperature. Actually the situation is slightly worse, since Cps is
known to decrease witiu decreasing temperature {Glayue and Stout, 1936), and

at the same time cpl increases with decreasing temperature according to exper-
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imental results extend ing to -15C (Scheel and Heuse, 1909) plus theoretical
extrapolation to -5CC (Goff, 19%3) based on thermodynamic relations between
cpl and de/dT.

VYalues of Lf(T) are shown in Figure 1. The dashed portion of the curve
in Figure 1 below -50C is the writer's own simple 123535 extrapolation be-
yond Goff's values. Although this part of the curve is a gross extrapolation,
it vill be used in certain estimatses made in Section 10. The very careful
nature of Goff's extrapolation to -50C from experimental data extending to-
-15C warrants considerable faith in the values down to weli below the -LOC
transition point, which is fortunate here, It is clear from Figure 1 that
previous analyses of the homogeneous nucleation of supercooled water, in which
a value of 80 cal 3m'1 has repeatedly been used for Lf in the Gibbs-Thomson
equation, have thereby been very seriously in error inasmuch as this roughly
b0 per cent overestimate of Ly 18 raised to the second pover and then used
in an exponential. For example, if just this one correction is made in
Mason's work it shifts the predicted transition point from near -4OC as im-
plied in Teble 1 to the very much lower temperature of -68C. Comment has al-
ready been made on wvhat the same type of error di1d to Lafargue's work. In
8ectlion 7, below, it will be shown that failure to recognize that Ly decreases
with decreasing teumperature produced still another type of error in Krasta-
nov's (1949) estimate of O’S .

There is a second, less obvious correction of Ly that must be considered.

Thie second correctinn has also been overlooked in previous studies, though i
fortunately without numerical errc:r since still anotuer oversight closely come-

pensates this one, as will be shown later., Despite this near-cancellation of

one error against another, it seems advisable to examine ecach here to avoid

possibility of ons of them being detccted and corrected and not also the other.

The present point hinges upon the fact that the ice whose fusion is involved
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Figure 1., Teumperature dependence of the latent
beat of fusion of ice, Lp. Values from OC to -50C
after Geff, Values from -S0C to -80C obtained by

linear extrapolation.
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tn homogeneous nucleation occurs in the form of extremely small embryos with
radil of the order of 10 - 20 Angstroms. For particles of such small radil
of curvature, there appear-s the same sort of geometric effect on binding en-
ergy as vas referred to above in a footnote in Section 2 for the case of lig-
uld embryos. The binding ensrgy (and hence the latent heat of fusion) must
decrease with decreasing ewbryo radius, and although this decrease is en-
tirely negligible for radil above, say, 10"6cn, it becomes numerically sig-
nificant for particles of the size of those here in question.

To obtain thermodynamically a measure of the reduction of Ly due to sur-
face curvature etfects, consider a spherical ice emdbryo of radius r from
vhich a small mass dm of vater molecules is removed by melting. Let Lg now
denote ths latent heat of fusion for r =opat the temperature in question.
Then the amount of energy 4Q that must be supplied to melt off dm grams of 1
ice from the sphere is less than Lg,dm by the emount of the decrease of sur-
face energy, G; dA, wvhere dA is the change in surface area of the embryo ac- i

companying the spherically symmetric stripping of the dm grams. Thus, inas- {

much as

dm = L 77 ()S réar
and

dA = 8 [T rdr,
and €ince

dQ = Ledm - (g da,
it follows that

Ler= 44 =Lp - 205 , (8)
dm €Sr

vhere Ly, 18 the latent heat of fusion per gram of ice at a radius of curva-
ture r., It may be noted that (E itself i{s sire dependent, but allowance for

tuis would only introduce second-order correction into (8),
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The numerical magnitude of this size correction of Lg s sudlect to the
asme relative error as is the value assigned to 03 , 80 1t will turn out
that its precise value cannot here be determined since 0‘5' vill firelly turm
out to be uncertain. However, an estimate of its effect can be made by con-
sidering a nuclear radius of 10 Angstroms (approximate size ia water nuclea-
tion at -L0C) and assuming 0‘;z 20 erg cm"2 (rough average of three estimates
of G; given in Section 7 below). In this case the correction term amounts
to about 13 per cent of Ly, This correction is thus about half again as large
as the correction due to the revision in form of the Gibbs-Thomson equation,
vhich vas shown in Section 4 to shift the theoretically predicted transition
temperature by about kC.

It 18 interesting to compare (8), vhich has been obtained here thermo-
dynamically, vith the results of an approximate molecular argument given by
Benson and Shuttleworth (19%1). They calculated the ratio of the molecular
heat of vaporization for a small cluster of molecules to that of a plane sur-
face on the assumption that all pairs of molecules interact according to an
inverse twelfth power repulsive potential plus an inverse sixth power attrac-
tive potential. For the simplest case of a central molecule surrounded by
tvelve close-packed neighbors, they computed the ratio to be about O.k. Since
Benson and Shuttlevorth's model implies that this ratio may be expecied to
vary approximately as (1 - cﬂ‘1/5), vhere ¢ is a constant and N is the number
of molecules in the cluster, their value of 0.4 for thirteen molecules may be
raised to about 0.6 for a cluster of the size referred to in the preceding
paragraph, since such n cluster would comprise 25 to 30 vater molecules. The
correspond ing ratio for latent heate of fusion predicted by (8) «as 0,87.
This order of magnitude agreement with Benson and Shuttleworth's result is
surprisingly good in view of the present uncertainty in 0; and in view of the
other approximations involved in both approaches to this ratio., It seems ap-

propricte to regard this agreement in size effect estimates as providing mu-
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tual support for theee guite independent methods of estimating latent heate

of small aggregates of molecules.

6. Density of fce

The coefficient of volume expansion of ice near OC is (Doresey, 1940)
1.5 x 10"‘de3.‘1. It follows that even at -50C thsrmal contraction has in-
creased the density of ice by only gbout one per cent of ite value of 0.92 at
OC. This change is too small to be considered here. It will, furtherwore,
be opposed by a decrease of density assoclated vith surface distortion of the
{ce lattice (Brown, 1947). Since nuclel have relatively large surfacs/vclume
ratios, this latter type of density change may become sensible, Shuttlevorth
(1949) calculates that it amounts to several per cent for homopolar crystale,
but this density reduction is localized almost entirely to a surface monolayer.
Pend ing further developments in the theory of dipole-bonded crystais like ice,

the effect must be ignored.

7. Surface free energy of a vater-ice interface

No one has yet devised an experimental technigue for directly measuring
G; for an interface between supercooled vater and ice, nor even for water
and ice at the triple point, to the writer's knowledge. Nothing could be more
unfortunate for the problem at hand. Inspection of (3), (4) and (6) reveals
that 0; has a controlling influence on the homogeneous nucleation rate since
it enters to the third pover in an exponential in the J-equation. It follows
that major effort should be devoted to getting improved estimates of O'S by
any avallable theoretical means. In the present section, attempts will be made
to refine Krastanow's (1941) and Mason's (19%2) values., The present study has
not led to any essentially new basis for estimating O} , but {t has revealed
that numerically significant changes have to be made in both of these existing

methods.,
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Krastanow's basis for estimating C; depenied upon a general relationship
rather cesvally suggested by Volmer (1939, p. 181). The iatter proposed that

cne wight get a rough value of this quantity from the proportior

O . %
Lf L-v (9)

The validity of such a proportion depends on how surface free ¢nergies and
latent heats are related, respectively, to intermolecular binding energies,
and depends particularly on whether that relationship is identically the same
for the solid and the liquid states. It must not be thought that this iden-
tity has been proved by either Volmer or Krastanow; in fact neither has given
any comment of justification for (9). Since Krastanow's estimates of

as derived from (9) have been used without apparent question in subsequent
studies by other investigators (Lafargue, 1951; Weickmann, 1951), and will
also be used below, it becomes a matter of scuc interest to try to assess this
equation's validity, even if only to first approximation,

In the latter spirit, the writar offers the following crude derivation of
Volmer's equation bused upon a result of a theoretical analysis of the rele-
tion dbetween surface energles and latent heats of sublimation of crystals
(shuttleworth, 1949). Frcm direct molecular calculations of the surface en-
ergy, Shuttlevorth found that an expression of the form a.® o '/Lsnx holds
for homopolar crystals, where a; is the intermolecular (or interatomic) dis-
tance in the soliaq, G;lia the surface free energy of the s0lid against its
vapor, and K is a constant depending upon the interatomic potential used and
on the lattice geometry involved. For a (111) face in a face-centered cublc
homopolar crystal, K 1s about 0.2 for one plausible potential., Shuttleworth
discussed quantitatively the effect on G;ldue to surface distortion of the
lattice of van der Waals crystals, but could only point out qualitatively

that for crystals in which permanent dipoles influence the bonding
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vill be appreciably lower due to greater contribution of distortion energy.
Since vater is a substance of particularly marked dipole-dipole bonding
(hydrogen boniing), one would expect a K-value somewhat below 0.2 in the case
of interest here,

If one next considers the liguid state, he observes that an interaction
picture very much like that assumed by Shuttleworth exists as far as concerns
the short-range order i{mportant in homopolar or dipole bonding, and particu-
larly so in the case of supercooled water, which appears to have & very ice-
like structure, at least out as far as second-nearest neighbors (Dorsch and
Boyd, 1951). Hence one might expect that supercooled water should also be
characterized by a Shuttleworth relation of the form ﬁ 02 /LyuK', where
al is the intermolecular distence in the liquid structure and K' {s the new
constant for liquid water. But since to within the limite of accuracy of the
present discussion agays a£ » 8nd since structural similarities and interaction

similarities should lmply KA K', it should follow that a proportion of the
- / -
form A &N

L. 7 (10)

wmight hold approximately. Furthermore, each ratio in (10) would be expected,

as Shuttleworth noted, to be somewhat emaller than 0,2. Actually, the right
wember, which is readily evaluated, equals 0.08 at 0C’. Frouw the OC value of
) 85
Ty, One finde from (10) that O; is about}\erg cm™¢. Then invoking Antonov's
rule (Adam, 1951) to estimate Jg , one finds
/
0; ~Jg - U < (85 - T5)ers cu? = 10 erg cm?

Finally, putting this estimated OC value ofcg back into Voluer's equation (9),
one finds that the left and right members have numerical values of 2.93 x 10'9

and 3.0l x 10'9, respectively, when the latent heats are orce again expressed

in erge per gram. This agreement of the two members of (9} to better than one

5One must use the lateut heats per molecule in Shuttleworth's relation.
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per cent is almost certainly fortuitous because of the many approximations
involved in the preceding discussion, What can he said, however, is that
Yolmer's equation has now been provided with at least some theoretical sup-
pOTt, which has not been true previously, to the writer's knowledge. Briefly,
one can regard (10) as following from Shuttleworth's relation plus the sim-
{larity in structures of ice and supercooled water; and Volmer's equation (9)
then appears to be related to (10) through Antonov's rule. It should be
strongly emphasized, however, that (9) has been justified here in only a very

approximate mennar; so computations based upon it simply cannot yet be re-

garded as definitive, a point which has not been given deserved emphasis in
previous applications.

Since (9) has now been rendered st least plausible as one relation for
making approximate calculations of g » the next step is to examine whether
Krastanow's (1941) applicationc of (9) can merely be taken over here for
later use in estimating J. Although Krastanow 413 not state the numerical
valucs he used to compute his 03 values, the writer finds that Krastanow's

results can be reproduced to within one per cent by introducing into (9)

temperature-depenient values ofo; extrapolated helow OC from data such as
those given by Zemansky (1943) and temperature-dependent values of L, (List,
1951), but by using a constant value of Ly equal to 80 cal gm-l, This last i
fe;tu.re of Krastenow's ;npproach vas erroneous because of the temperature de-
pendence of Le. His original computed values of QS are shown in the first
line of Table 2. By using Ly values taken from Figure 1, one obtains the set

of values shown in the second line of Table 2,

Table 2, Water-ice interfacial free energy Og as computed

from Volmer's equation. Units of T; are erg cm=<,

| Teuperature (°C) 0 -10 -20 «30 4o -50
' Krastanow's Os 10,0 10,2 0.4 10.6 10,8 11,0
| -

Corrected g 10.0 9.6 9.1 8.5 7.7 6.8

\ |
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Whereas Krastanow's values increase slovly with decreasing temperature,
the temperaturs-corrected vealues decrnase aprreclably. That the latter sort
of temperature Jependence is the more reascnable would seem to follov from
Dorsch and Boyd's (1951) x-ray diffraction studies, which indicate that as
the degree of supercooling of water increases, the liquid becomes increasing-
1y ice-like in structure, And as the structures of the two phases grov in-
creasingly more similar, it should follow that the surface free energy of the
interface between the two phases should decrease tovards the zero value it
must exhidbit ip toe limit of complete isomorphism, Consequently the present
revision of Krastanov's -omputation must be regarded as more nearly correct
then the original values and will be used later in Section 10. Note that in
the neighborhood of the -4OC point, Krastanow's value is about 4O per cent
too large, if the present revision is taken as the reference value.

Although Krastanow's estimates of G'S were substantially in error, it
must next be noted that since 6; and Le enter the Gibbs-Thomson equation only
in the form of the ratio {/Lf, and since exactly this ratio forms the lert
side of (9), Krastanow's errors mo‘s and Ly inevitably cancel each other ex-
actly as far as »ny calculations of r, from (5) is concerned, Nevertheless,
F. varies as J rca, 80 Krastanow's roughly 40 per cent overestimate of O¢
iteelf near -4OC would still remein to throw off any nucleation rate calcula-
tions based on his results, It can be seen that some extenuating remarks
migat be wmade along the same line about Lafargue's (1951) calculation; but
Lafargue mixed a OC value of L, with a value of G; vhich appears to have beer

{interpolated linearly between Krastanow's OC value and his -4OC value. This

somevhat undoes the work of one error canceling the other, so the point will

s @ Scns




T T R R~ S S W= T r———

-29-

not be amplified here, especiall, since Lafargus's whole approach is funda-
mentally unsound.

Baving examined in some deteil, and reflned in one way, the Volwer-Kras-
tanc method for estimating (3;, attention will pext be turned to a second
method, first used in a meteorological application by Mason (1952). Hason's
approach was as follows: He coumputed, using crystallographic data for 1ice,
the total number of hydrogen bonds per unit area of a (0001) plane in ice,

combined this with an estimate of the energy required to break one hydrogen

bond, and therefrom determined the cleavage work per unit area required to |
pull an ice crystal apart perpendicular to the bagal plane. Since this cleav-

age process creates two units of new surface area per unit area of basal plane, H
he identified one-half of the cozputed cleavage work (one-half of 20k erg
cu™® or 102 erg cm’a) vith(S; ', the specific surface free energy of ice
against vater vapor. Next he implicitly introduced Antonov's rule to obtain

O; by subtracting the specific surface free energy of water against vapor

from the 102 erg cm'e. Using a value of 80 erg cm‘2 for the surface tension
of vater at -40C, he obtained 22 erg cm™® forG;. This value, then, undar-
lies the zesults shown in Table 1 above., In view of tne extrem= sensitivity
of calculated J values to the value used for (5’8, it 1s immediately disturb-
ing to see that Mason's estimate is about three times as large as that which
has been obtained above for -LUOC from a refinement of the Velmer-Krastanow
method., Ttis discrepancy demands that a careful evaluation of Mason's method
of estimating 6’ be carried out, for although it has been emphasized above {
that the Volmer-Kraetanow method remains open to serious question, choice be-
tveen it and Mason's method cannot be made until the latter's validity is also
agsessed,

A first, and rather obviouc guestion concerne the value vhich Msson took
for GI. at -40C, namely 80 erg cm=2. Perhaps, although he did not sv state,

Mason way have becn influenced in this chcice by a suggestion due to Sender
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and Demkohler (19%3) to the effect that a value of about 78 erg cm® 1s re-
quired for Qnear -4OC to make certain experimental data on water vapor nu-
cleatton agree with theory. Bradley (1951) as well as LaMer and Pound (1951)
have suggested toat the decrease in Oz telow values extrapolated from exper-
imental data above OC may actuaily have been due to the effect of high sur-
face curvature of the water nucle! involved. This explanation seems guite
plausible to the writer (see comments at the end of this Section on a similar
phenowenon in ice nuclel), If trve, then it is definitely incorrect to make
size correction in oiand then use this in Antonov's rule as has to be done
in Mason's approach. Fortunately, soms observational date exist tc throw
light on this question. Hacker (1951) has recently carried out an excellent
experimental study of QTK for water supercooled down toc as low as -22C. His
results are in very good agreement with the Internstional Critical Tables to
as far as the latter's data extend, -10C, and coufirm the existence cf the
slight inflection point in ()}(T) near OC that can be discerned in the I.C.T.
valuea, Eacker's results definitely contradict the deductions of Sander and
Daumkchler (to the extent that the latter investigatora' conclusions are ap-
plied to plane surfaces of water rather than to highly curved surfaces), fcr
near -20C, Hacker's curve is curving slightly upward while Sander and Dam-
kohler's is curving downward and lies already well below Hacker's absolute
values. It may be mentioned that there is little ground for guestioning
Eacker's results on the basis that surface contamination might have affected
his results, since contamination can easily lower surface tensions, but al-
most never raises them.

An extrapoletion of Backer's experimental curve to -4OC, preserving the
slight curvature of the OC to -22C range, yields a value of about 84 erg cm'2;
so it appears necessary to alter Magon's value of 80 erg cm‘a, and hence in

turn to revise immediately his value of O"S from 102 - 80 = 22 erg cm™ to
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102 - 84 = 18 erg cm™2. This rather slight revision in Ci;, it must de
noted, hes marked effects on calculated values of J and raises the theoret-
ically predicted transition temperature by about 6 Centigrade degrees, It is
clear that rather slight changer ir one's basis for assigning numerical val-
ues to efther (3;‘or (q; will have rather large effects on (S;'eince the lat-
ter 1s, unfortunately, obtained from Antonov's rule as a small difference,
0;"0', in two large terums.

The above revision has sent the present estimate of 6; downward to
improve somevhat the agreement between the Volmer-Krastanow estimate and that
obtained from the cleavage-work approach. The sensitivity of ()’s to the cal-
culated value of G.S' requires that the latter quantity be scrutinized next,
There appears to be no possibility of revising Mason's purely crystallographic
arguments concerning the density of hydrogen bonds per unit area of a (0001)
plane, a density which can be expressed inversely as an area per bond of 1.77
X 10"15 cm2; but two obJections must be raised againet his method of calcu-
iating the the energy per bond.

Mason fcllows Pauling (1940, p. 304) in assigning a value of 4500 cal
mole~l to the hyd-ogen bond energy at OC, but then states wiin no explanation
that the corresponding value at -4OC should be about 5100 cal mole~l, Now
the temperature variaticn of the heat of sublimation {quantity from which the
hydrogen bond energy is determined by Pauling's argument) can be estiwated

from Kirchoff's equation applied now to the solid-vapor transition,
(() Ls) — C - C s
=N o v
3T/F r
vhere Cpv and cpe are the specific heats at constant pressure for the vapor

and solid phases respectively. Near OC, Cpy = 0.4l43 cal gm‘ldeg’l and Cps =

pv and cpe

decrease with T, but in such a way that their difference remains nearly con-

0.468 cal g:r."ldeg‘l, so (o IS/aT)p:" -0.025 cal gm“ldeg‘l. Both ¢

stant, Hence, extrapolating to -4OC from the OC value, L = 677 cal 3m'1
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one finds that near -4OC L, 25 678 cal gn'l. Thic change represents an in-
crease of less than 0,2 per cent over the OC value, in serious disagreement
with Maaon's roughly 13 per cent hoost in the hydrogen dond energy over this
temperature interval,

Siuce the discrepancy between the above thermodynamic estimate of tem-
perature effect on L' and Mason's unexplained adjustment is so large and has
a warked effect on the calculated value of 0’5 , 1t 18 fortunate that at
least a crude indeperndent check can be effected as follows: The coefficient
of expansion of ice is about 5 x 10'5 deg'l, 80 the 4O degree temperature
change from OC to -UOC will decrease all lattice distances by about two parts
per thousand if the effects of the slight anisotropy of ice are ignored. Now
by Badger's rule (Pauling, 1340, p. 171), the force constant k, for a bond
varies about as 6'3, vhere 4 is the pertinent interatomic distance. Since
the range of forces here involved is only of the oxder of d itself, the work
of breaking a bond is of the order of kode, or 4342, or a-1, Badger's rule
is only an empirical relationship, but that it yields tolerably good approxi-
mations can be shown by checking it against heats of dissociation of two dif-
ferent hydrogen-bonded substances having known bond distances (e.g., water
and formic acid dimer)., Combining the thermal expansion datum with Badger's
rule, one predicts that the bond energy in ice should increase by about 0.2
per cent, Just the value estimated on purely thermodynamic grounds above,

Since Mason gave no justification for his 13 per cent increase in the
bond energy associated with the temperature change from OC to -40C, and since
tvo independent estimates assign it a value of only about 0.2 per cent, it
appears necessary to reject Mason's figure of 5100 cal mole'l in favor of the
OC value of 4500 cal mole'l for the hydrogen bond energy per mole (simply ig-
noring the here predicted 0.2 per cent increase at -40C). This revision of

[} n
Mason's eastimate of O; yields a value of 102(4500/5100)2£90 erg cm™“., Ap-
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plying Antonov's rule and using cz:eu erg cn~? at -40C, one now gets only
6 erg cm™2 for a second-revised value of U; . This revision has sent O'g
belov the revised Volmer-Krastanow value of 7.7 erg cm™<,

Hovever, a further error appears to have entered Mason's calculation of
Q;/ , and this error wore than cancels the tvo errors nov cited in his
calculation. In computing the work that must be expended in cleaving an ice
crystal parallel to the basal plane, Mason took account of only a part of the
total bond energy, that ascribable to hydrogen bending., That is, the value
of 4500 cal wole~l which he quotes from Pauling was obtained in turn by Paule
ing from the 12,200 cal mole-l heat of sublimation of ice by observing that
only about three-fourths of the total bond energy in an ice crystal 1is due
to hydrogen bonding. The remaining one-fourth is due to van der Waals forces.
Nov in the concepiual experiment of cleaving an ice crystal, work would be
done both in dreaking hydrogen bonds and in separating neighboring molecules
against the van der Waals attractions, so Mason wvas incorrect in ignoring the
latter. The van der Waals attractions here in question are mainly of the t
type known as London disperson forces and arise in ice because of dipole-di-
pule interactions between ad jacent oxygens. Fluctuations in the instanta-
neous dipole moment of one oxygen nucleus and its surcounding electron cloud
induce instantaneous dipoles in neighboring oxygens and the tiwe average of
these fluctuating dipole-induced-dipole interactions constitutes an attract-
ive effect. The exact nature of these forces is quite pertinent here because
all of the available electrons in vater may be regarded as surrounding the
oxygen nuclel so that it becomes clear that the erfective areal density of
van der Waals bonds on a (0001l) plane will be identical with that of the hy-
drogen bonds (since we may ignore all but nearest-neighbor interactions).
The two typcs of bonding will, in fact, act coaxially along the oxygen-oxy-
gen axes. Hence Mason's figure of 4500 cal tnole"1 has conly to be replaced

by 6100 cel mole~l to give a nev estimite for O of 50{6100/500)=122 exg cm™

]

i ST it R




-3k
Applying Antonov's rule as before, one gets 0;:38 erg cm™ as 2 final re-
vised value resulting from Mason's approach.

Neglect of the var. ler Waals bondirng was the most numerically serious
exror in Mason's wori and is seen to lead to a value of G; which is about
five times greater than the revised Volwer-Krastanow value for the same tem-
perature. This laige discrepancy in values of 6; predicted by the two avail-
able methods leads to vastly different values of J near -40C, as will be
shown belov, and demands that search be made for still further refinements in
the two calculational approaches so that the discrepancy may be reduced, It
vould, in particular, be very helpful even to knov if the revised Volmer-
Krastanow method somehow tends to underestimate (Jg or if the revised Mason
method tends to overestimate the same quantity. A coument will next be made
concerning the latter possibility.

In estimating the cleavage work in the way that gave Mason a value of
102 erg cm™ for (j;’and which has here ylelded 122 erg cm™2, no explicit
allowvance has been made for the reduction in the work of separation occasioned
by the distortion of the lattice in the vicinity of the two newly created
(0001) facee. The local density of atoms in the surface layer of a crystal
is slightly lower than the value characteristic of the deep interior, and as
a result a newly created surface of the sort envisioned in the cleavage opera-
tion vill relax into a state of lower potential energy during the separation
following cleavage. The result is (Brown, 1947; Shuttleworth, 1949) that the
net cleavage wvork is reduced by an amount dependent upon the degree of sur-
face distortion peculiar to the crystalline substance in qu2stion. Shuttle-
vorth has succeeded irn calculating this reduction term for the case of iner’-
gas crystals near absolute zero, and finds that it s of the order of only a
few per cent of the gross cleavage work. However, Shuitleworth observes that
for a crystal in which permarent dipoles contribute to the total bonding,

this reduction term will become apprecisbly larger, though by an emount which
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ke indicates 18 not easiiy computed. B8ince the ice lattice is chiefly held
together by hydrogen bonds of the permanent dipole type, 1t would seem to
follov that one must odtain & toc-large valus of G;’if ao reduction is ap-
plied {0 the cleavage work to sllow for surface distortion, This vould wean

-2

that 38 erg cm™ would, in turn, be an overestimate of OUg .

Although the writer has not succeeded in making any precise determination

of the distortion correction, the following crude argument is offered as an
indication of the order of magnitude of the effect: One can make a theoret-
ical calculation of 6’2 by the cleavage-work method used above§ but to get
6} one must, of course base the calculation on L, rather than L,. The re-
sult for OC is 107 erg em™?2 , which 18 32 erg cm™? greater than the known val-

ue of 75 erg em 2, At -LOC one gots 112 erg cm™

, which exceeds by 28 erg
cm'2 the -L4OC value used here on the basis of Hacker's study. Sipce the sort
of surface distortion which occurs in a crystal lattice also occurs in a liq-
uid (see, for example, Brown, 19%47), one may take 30 erg cm’a a8 an average
distortion energy for liquid water over the temperature range of interest
here, That this is a percentually very much larger correction than tue dis-
tortion correction Shuttleworth found for inert-gas crystals is not surpris-
ing in view of the very different force laws involved in the bonding of the
two types of substances; but whether this figure way be regarded as a cloee

estimate of the distortion correction cannot be said to be certain, It wiil

be a good estimate only if the cleavage calculation upon which the uncorrected
values of rfi wvere based do take appropriate account of all other factors. The
writer proceeds on the assumption that the latter is so,

Since the dipole and higher multipole binding in vater substence involves
significant interactions out to and possibly beyond next-nearest neighbors
(Campbell, 1952), one must expect that the surface structure in water wculd
be somewhat more open than that of ice since in water only short-range order

exists, while In ice long-range order prevails. Consequently the distortion
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energy in ice must te slightly leaa than that in vater, and roughly in in-
verse proportion to the latent heats of vaporization of the two phasas.
Hence, the distortion correction in ice may be taken here as about 30(Ly/L,)

~, 26 erg ca2 for the temperaturs range fro= OC to -k0OC. Applying this cor-

2 P

rection to the previously cdbtained vaiue G;I- 122 erg cm™  one gets GG

erg cu‘e as a crudely distortion-corrected estimate of the specific free
energy of a vapor-ice interface,

/
Two distinct values bave nov been found for G from the cleavage-work

-2

approach, 122 erg cm ~ as a value uncorrectsd for distortion, and 96 erg

cm‘a as a value very roughly corrected for distortion. Using Antonov's rule
with values of C)‘jetaken from Hacker (1951) and from a smooth extrapolation
to <-50C of Hacker's data, onc gets the two sets of O:s values shown in
Table 3. For reference, the first line contains the 02 values used in the
calculations.

2

Table 3. Values of (3; in erg cm - calculated from the work of cleaving

an ice crystal elong a (000l) plane.

Temperature (°C) ) 0 -10 20 -30 -k -5
Value of Cfg_ used (erg cm'a) 75 11 80 82 84 86

Jg uncorrected for distortion energy 49 45 43 4o 38 36
Ug "corrected”" for distortion energy 21 19 16 b 12 10
A last point to be considered under the heading of surface free energy

of a vater-ice interface concerns the question of the size-dependence of 03
It has been argued theoretically (e.g., Tolman, 194E) that surface energy
must in general be a function of surface curvature, Indeed, the sort of
simple molecular model in terms of which the r-dependence of Ly was ottalned
earlier here demands r-dependence elso in G; since both of these parameters
are largely determined by surface binding forces and the net effect of the
latter is dependeat upon surface curvature. LaMer and Pound (1951) have con-

sldered the experimentai evidence for a decrease of surface tension of liguid
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vater vith decreasing radius of surface curvature and have discerned vhat
may be such an effect in the experimental deta of Sander and Damkohler (1943).
Bradley (19540) wade a calculation based on an inverse-seventh power law of
attraction inserted into the Laplacien theory of capillarity and concluded
that the surface free energy might drop by slightly less than 10 per cent
at r=4d1{ equal to ten molecular diameters, and by perhaps 13 per cent for
drops with radii equal to only five molecular diameters (order of magzitude
of critical ice embryos). More recently, Benson and Shuttleworth (1951)
have made a similar calculation except tbat they included repulsive interac-
tions. They found that for clusters of as few as thirteen molecules the
size-reduction amounts to perhaps 15 per cent of the plane-surface value.

The fairly close numerical sgreement between Bradley's and Benson and
Shuttlevorth's estimates of 10-15 per cent for tha particle size range here
involved, coupled with the further agreement between this estimate and the
writer's size correction for the parameter L, (Section 5 above) has led him
to treat /Lf as size-independent in the Gibbs-Thomson equation (6). This
leaves Just the explicit factor of O in (4) to produce net size dependence
in the nucleation rates, and the writer chooses to employ a uniform 10 per
cent reduction in 03 vhenever ¥, is being computed, since the embryo radil
arelA’%)ust the size range where the above evidence suggests a correction of
this order magnitude, Clearly there is xoom for improvement here, but it
does not seem likely that much will be possible until a wore complete theo-
retical treatment of surface energy of small aggregates is forthcoming.

8. The nuclear shape factor g

Once all parameters entering the Gibbe-Thomscn equation are specified,
the value of F. s still dependent upon the shape factor g in (4). Mason
chose g 22 23, the value appropriate to an hexagonal prism wvhose height equals

three tiwes its apical semidiameter, but he did not discuss the basis for
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this particular choice. Since all of the thermodynamic arguments that under-
lie the Gibbs-Thomson eguaticn assume spherical nuclei, and since g for a
sphere i{s only 47 12,6, the use of any other value calls for soms Justifi-
cation, As soon, however, as one gives explicit attention to this matter he
recognizes that here is still another of the numerous details of nucleation
theory which pose fairly subtle prodblems. In considering nuclear shapes,
one must cope with the constraint imposed by the lattice geometry character-
istic of ice; and for such small crystallites as those comprising nuclet in
supercooled vater near -LOC it {= not clear that cne can choose arbitrarily
either a sphere or any other shape. One guiding principle here is that the
most probadble nuclear shape should dbe that which is both representable by a
microlattice and is consistent with the requirement that the total free en-
ergy shall be a minimum for the given number of member molecules., By anal-
ogy with gross crystal morphology one would expect that the crystal faces of
high specific surfaceé free energy would repidly grow out, leaving best devel-
oped the faces of low specific free energy. Since Weickmann (1947) has
clearly established thc dominance of elongated hexagonal prisms near the -LOC
point, one concludes that near that temperature the basal planes must be
charactized by somevhat larger specific surface free encrgy than are the
prism faces. It follows (really by direct deduction from Weickmann's obser-
vations) that the preferred shape for nuclei near -40C ought to be elongated
prisms, unless curvature effects somehov alter this problem seriously. Since
Mason's choice of g corresponds to a shape that might be built up from the
basic lattice geometry of ice while a sphere does not (in the limit of aggre-
gates of nuclear size), and because furthermore the same g seems consistent
vith Weickmann's observations on wacroscopic crystals, the writer chooses i<
follow Mason in using g > 23.

As for the implications of Inconsistency this choice seems to introduce

in view of the spherical shapes assumed in all underlying thermodynamic argu-
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wents, the writer would make the following observations It has been pointed

out earlier that (i) is correct only as long as edge ensrgies are unimportant;
and the ratio of the contridbution of edge energies to that of surface energles

grovws large for exactly the size limit near which one works in nucleation the-

ory. It is of double interest, then, to note that in Benson and Shuttle-
vorth's (1951) analysis of the surface energy of small nuclei, their term

vhich represents the contr’bution of edge energy to the total surface energy

of a polyhedral cluster csn be shown to comprise a term of identical function-

al form and approximately equal numericel magnitude as that which has been

discussed above at the end of Section 7 in connection vith the size-dependence

of Gg. That 18, 1f one uses a value of Og corrected for size-dependence,
it appears that he {s essentially making an edge-energy correction for what
is in microscopic reality a polybedral crystallite rather than a true sphere,
9., Activation energy for self-diffusion

The wmost essential difference between the solid phase and the liquid
phaee of a given substance is that in the former, long-range order exists in
the form of a truly crystalline structure, vhile in the latter only a short-
range order exists. Yet {n many liquids, of which vater is an excellent ex-
ample, this short-range order is well enough developed that one seems forced
to regard each molecule as being rather well locked into a local structure
vhich in the case of wvater is known to be tetrahedrally bonded. In view of
this tendency towards a crystal-like local structure, molecules cannot move
in a truly gas-like fashion among each other in a 1liquid, Hence the phenom-
ena of self-diffusion and viscosity come to depend upon the probability with

vhich an individual molecule wmay break one or more of the bonds which hold 1t

to its nesrest reighbors preparatory to moving relative to the local structure,

The ensrgy » r2quired to thus attain the more mobile state of higher potential

energy is dravn from the thermal energy distribution by the mechaniem of ran-

dom vibrational collisions, and tre fractional prodbability that a given liquid
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molecule may have acquired this so-called "activation energy for self-diffu-
sion" 1s given by the factor exp(-A/kT). This probability factor enters into
the nucleation equation because each moleculs (including the last one needed
to Just attain critical size) must first free {tself from the liguid struc-
ture near the vater-ice interface 2nd then diffuse from the liquid region over
onto the crystal lattice., The activation energy barrier may be thought of
looscly as being made up of the work of breaking one intermolecular bond pri-
or to the molecule’s chance rotation into an orientation compatible with entry
into the local lattice plus the work done during the very small linear trans-
lation then needed to lift the molecule from the bottom of a potential well
close to its former liquid neighbors up to the plateau between that well and
the potential well close to its future crystalline neighbors., In the limit
of very low tewperatures, where Fc becomes negligibly small, the rate of
growth of embryos becomes limited almost entirely by the diffusional barrier,
and a true ice lattice may have to give way to a vitreous form of the solid
phese,

Since exactly the same activation energy enters, in an inverse manner,
into viscous processes it becomes possible to determine A from emplirical vis-
cosity data, Although there have been proposed many different expressions for
describing the tempersture dependence of viscosity (Partington, 1951), the

wost widely accepted on both theoretical and observational grounds is
(A T)
S (: M N
( = G

vhere *l is the coefficient of viscosity and C 1s a constant.

(11)

Mason (1952) made use of (1ll) to determine A using viscosity data of White and
Twining (1913). He obtaired the value A=3.3x10"Jergs,and it 1s of immedlate
interest to note that tuils is of the order of magnitude of the energy per

tond in 4ater, as would be expected on the basis of the physical picture sug-

geated above,
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It should be mentioned here that Krastanow (1941) gave an estimate for A
of 2:1010 erg 3m'1 or about 6:10'13 ergs per molecule, which he obtained from
a suggestion due to Volmer (1939) that A must be somewhat less than the mole=
cular heat of vaporization of the substance in question. That Krastanow's
value is about twice as large as that found by Mason from {il) 1s due to the
fact that an estimate based upon L, (Krastanow actually used 500 cal gm-l)
inevitably measures the energy needed to break two intermolecular bonds,
vhereas diffusion actually appears to proceed primarily by a sequence of
single-bond ruptures followed by rotations about the remaining bond, even in
ice (Owston, 1951),

To cowplete this brief examination of previous treatments of A i auclee
ation studles, it may be recalled that one of the objections raised {n Section
3 tc the calculations of Fisher, Hollomon, and Turnbull (1949) concerned their
complete omisslion of a term of the form exp(-A/kT) in their nucleaticn equa-
tion. In terms of the physical picture suggested above it secems clear that
this omlssion left out an effect which, especially for large degrees of su-
percooling, assumes appreciable impcrtance in inhibiting embryo growth.
Finally, it may be noted in passing that a diffusional barrier does not af-
fect nucleation of either liquid or solid embryos forming in supersaturated
vapor because the nearest-neighbor distance in a vapor is generally so great
as to preclude the sort of interactions which inhibit diffusion in a liguid.

In estimating A, Mason's approach is followed here, However, Mason d1id
not take cognizance of the fact that A increases with decreasing temperature
due to the increasing degree of order in the liguid structure at lower tem-
peratures, From viscosity data given by Dorsey (1940, Tables 82, 85), the
vriter has computed A(T) in the temperature range from -10C to 70C. The re-
sulta are shown in Figure 2 as the solid portion of the curve. Mason's value
of 3.3x10-13 erg 1s seen to correspond to a temperature of about 5C, while in

the temperature range of interest in the problem, A 1s clearly going to be
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Figure 2, Temperature dependence of the activation energy for
self-diffusion in vater. A is given in units of ergs per molecule,
Valuves from 60C down to -10C calculated from empirical viscosity
date (Dorsey). Values from -10C down to -50C obtained by linear

extrapolation.
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larger. In viev 0® the fact that the functional form of (11) is not indis-
putably established, the writer has only felt justified in making a simple
linear extrapolation down to the temperature limits of interest here, This
procedure probably tends to underestimate elightily the activation energy bar-
rier, but is clearly an improvemsnt over tiue use of a constant value corres-

ponding to a temperature near OC.

10, Calculations

The primary objective of the present etudy has been to determine, if
possible, wvhether the -40C transition can be explained theoretically in terms
of the homogeneous nucleation process. The test of this hypothesis consists
in calculating values of J from (3), (4), and (6) for vwater drops of specl-
fled size and for a number of different temperatures to see what degree of
supercooling i{s required to raise the nucleation rate per drop per second to
the order of unity (cf. discussion of Table 1 in Section 3 abové} This will
now be done, usirg the revised numerical values of the several parameters dis-
cussed in Sections S5 throvgh 9 abcws.

In the calculations, the value of n in (3) will be taken to be the num-
ber of water molecules in an isolated drop of 10 micron radius. From the val-
ues of J here calculated, one may readily obtain the corresponding values for
smaller or larger radii to form a table of the form of Table 1, since J var-
ies linearly with n. A radius of 10 microns is selected here as being typil-
cal of the drop size reportsd in laboratory studies of the -4OC transition
(e.g., Schaefer, 1949)., It also serves reasonably well to represent the nat-
ural cloud physaical situation.

Since (3) is tranocendental in T, one cannot simply put logldJ = 0 and
solve directly for T to determine the theoretical transition temperature. In-
stead, one may compute and plot loquJ(T) and ther read off the value of T

where the curve crosses the axis of abscliesas. This hae been done heres in
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Figure 3. Temperature dependence of the nucleation rate J for super-
cooled water drops of 10 micron radius. Curve I was coupulted using
0:,;. as estimated by ‘he revised Volmer-Krastanow method; Curve II
vwag computed using G:S as estimated by the revised Mason method with

an approximate correction for surface distortion energy.
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three meparate series of calculations, one corresponding to each one of the
wethods of estimating G; . The results, displayed in part in Figure 3, are
as follows:

(1) woing C‘: a5 obtalned by the revised Volmer-Krastanow method (Table
2), one gets curve I of Figure 3. It is seen that the tewperature for spon-
taneous nucleation of 10 micron drops is predicted to be abcut -10C according
to this calculation.

(2) Next, using values of (3; obtained from the present revision of
Mason's approach (Table 3) one obtains values of J vhich are so minute as to
preclude spontaneous nucleation anywhere near -4OC. The lowest temperature
to which the writer extended this part of the calculations vas -70C, and even
for that extreme degree of supercooling, a drop of 10 umicron radius would ex-
perience a nucleation only once in about 1068 seconds, if this second set of
st-values vere correct. The age of the universe is believed to be of the
order of 1017 seconds. Such low nucleation rates cannot conveniently be
shown in Figure 3, and vould clearly be of no meteorological interect =nyway.

(3) Finally, using the values of (J; baced on the present revision of
Mason's approach but corrected very roughly for distortion effects in the wan-
ner indicated earlier (Table 3), one gets the curve shown as II in Figure 3,
from which the theoretically predicted transition temperature is found to be
about -26C.

Before discussing these results, one additional calculation will be ex-
amined, Fisher, Hollomon, and Turndull (1949) have used (3) to compute the
value which (j; must have if the -40C transition really is due to howogeneous
nucleation, In Section 3 above, several objections to their calculation have
been noted, It is oi' interest here to repeat that calculation on the basis of
such revisions as have been made in the course of the present study (excepting,
of course, revisions in methods of calculating (75 {tself)., Assuming that the

laboratory observations of the -4OC transition apply to drops of 10 micron ra-
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dius, one finds by this sort of inverse calculation that a value of G‘; of
18 erg em™2 would bring the present theory into accord with laboratory obser-
vations, This figure is to be compared with the -4OC values of 7.7, 38, and
12 exg cm™2 obtained in this study by three different methods, and with the

value of 33 erg cm=2 deduced by Fisher, Hollowmon, and Turnbull.

11, Discussion,

On the basis of a rather large number of revisions of previous efforts
to examine the -4OC problem, three separate calculatiors have been made hers
employing three different sets of estimated values of C)'.,’> , the variable hav-
ing dominant numerical influence on the theoretical nucleation rates,

The first of these calculations (Curve I, Figure 3) implies a far too
efficient nucleation process. If all of the other parameters controlling J
can be trusted (and they can certainly be trusted to far greater extent than
can Gg ), then one can conclude that the values of (J; estimated by the Vol-
mer-Krastanov method must surely be lower than the correct values because it
is vell known that liguid wvater drops often exist in clouds at temperatures
substantiially belov -1CC, It must be recalled that no really firm basis for
accepting the Volmer-Krastanow method for estimating (3; hag yet been given,
although the writer has suggested earlier here one way in which it can at
least be rendered qualitatively plausible.

The second calculation predicfs an effectively 2ero nucleation rate down
to degreess of supercooling well beyond any of meteorologicai interest. That
is, when the writer calculates 0’5 after the wannrer ayggested by Mason, but
with Mason's apparent errors corrected in the best way recognized by the write-
er, the implied nucleatica rates are found to fall completely to account for a
-4OC transition. This plus the results of the first calculation seems to
place the ~burden of the arguwent squarely on the correction for distortion en-

ergy in the cleavage computations.
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In the third calculation, where a crude, though at least not arbitrary
correction for the lattice distortion effect has been included, tbe predicted
transition temperature still falls outside the range of observed transition

points, though by an amount which is only about half as great as the discrep-

ancy for the frirst of the three calculations., The phenomenal increase in

computed nucleation efficiency that accompanies the application of the din-

tortion energy correction 1s very disguieting in view of the uncertain grounds

on vhich a dietortion correction was made here, Consequently it becomes im-

portant to examine the possibility that one could make some more straightfor-
vard attack on the problem of determining the distortion energy.

If one had experimental data concerning the lattice expansion in the out-
er tvo or three molecular layers near an ice surface, he might calculzate the
distortion energy fairly accurately from the known coumpressibility coefficient
of lce; but unfortunately x-ray data inevitably provide only a picture of the
average structure down to many tens of molecular or atcmic distances, Per-
haps electron diffraction methods hold somewhat more promise, but the 41ffi-
culty in adequately preparing a sample surface in the case of ice would nrobe-
ably be a limiting factor here,

On the theoretical side, it might be hoped that a direct calculation wod.

eled upon that made by Shuttleworth for inert-gas crystals would be the answer,

ard this 1s indeed so in principle, In fact, however, such a calculaticn

wouléd be extremely difficult., Following Shuttleworth, one would seek a gerer-
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In the third calculation, where a crude, though at least not arbitrary
correction for the lattice distortion effect has been included, the predicted
transition temperature still falls outaide the rangs of observed transition
points, though by an amount which is only about¢ half as great as the dlscrep-
arcy for the first of the threa calculations, The phenormenal {ncrease in
computed nucleation efficiency that accompanies the epplication of the dis-
tortion energy correction is very disquieting in view of the uncertain grounds
on vhich a distortion correction was made here, Conseguently it becowmes im-
portant to examine the possibility that one could make some wore straightfor-
vard attack on the problem of determining the distortion energy.

If one had experimental data concerning the lattice expansion in the out-
er two or three molecular lajers near an ice surface, he might calculate the
distortion energy fairly accurately from the known compressibility coefficient
of ice; but unfortunately x-ray data inevitably provide only a picture of the
average structure down to many tens of molecular or atomic distances. Per-
haps electron diffraction methods hold somevhat more promise, but the daiffi-
culty in adequately preparing a saumple surface in the case of ice would prob-
ably be a limiting factor here,

On the theoretical side, it might be hoped that a direct calculation mode
eled upon that made by Shuttleworth for imert-gas crystals would be the answer,
and this is indeed so in principle. In fact, however, such a calculstion
would be extremely difficult, Following Shuttleworth, one would seek a gener-
al < tpression for the potential energy of a surface molecular plane with re-
spect to all of the rest of the crystal, minimize thi{s with respect to the
interplane alstance, solve for the implied cquilibrium interplane distence,
and then insert this back into the general energy expression to compute the
reduction in energy due to surface distortion., But whereas the interatomic

6

attractive potential {n an inert-ges crystal falls off as r -, that for di-

polar ice would contain terms falling off only ae r'i, 80 one would have to

s P

e S T ERYRE § AT ENRCE e




4

el

18-

ainivize Jcirtly the potential energy of at least the two uppermost planes

of water molecules, and this might be only a first approximetion. This com-
plication would not be so serious by itself, but each of these potentials in-
volved would have tc be cxpressed ae a sum over the lattice of a Taylor ser-
ies expansion (multipole expansion) of the charge distribution around each
HpO molecule, Campbell {1952) has examined the problem of calculating the
lattice energy of ice (for fixed intermolecular distances) in terms of mul-
tipoles, and has found that even when one includes up to fifth-order terms
(e.g., octupole-octupole interactions) for nearest-neighbors the agreement
vwith the corresponding thermodynamic data 1s unsatisfactory. Furthermore,
Campbell found that interactions between next-nearest neighbors are still
significant out to beyond third-order terms. From Campbell's Table II, one
can see that this means that the potential energy for each molecule in a
plane pear the surface must contain some fifteen terms in the variable inter-
plane distance; and since one must find a joiat minimum for at least the
first two interplane distances, it follows that at least thirty terms are in-
volved in the function vhose minimum would be sought. Finally a very serious
further complication enters by virtue of the fact that these multipole inter-
actiors, unlike the dispersion forces (London, 1937) with vhich Shuttleworth
dealt, are not simply additive, so the type of lattice sums which were usable
in Shuttlevorth's calculation are not applicable here,

In all, it seems questionable whether the heroic efforts that would have
to be made to effect this lattice calculation of the distortion energy are
meteorologically Justifiable, This laest step required to complete the theo-
retical exploration of the problem of homogeneous nucleation of supercooled
vater drops appears to be of an order of difficulty far exceeding that of any
solid-state calculstions that uave yet been carried out for ice or other dipole
crystals, Consequently the writer feels thet the fact that even a crude esti-

wate of the distorticn has here ylelded a theoretically predicted temperature
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of -26C may for the present be taksn as a strong indlcation that the -kOC
transition ie truly an effect of homogeneous nucleation, an effect whose pre-

clee nature cannot be specified quantitatively in the pregent state of know-

ledge of the solid-state physics of ice., Careful scrutiny of the present re- i
visions of previous investigators’ wcrk will have to be made by others before
this conclusion can be accepted; but if the present calculations can be re-

garded =3 essentlally correct up to the last step of making the distortion

corraction, and if no experimental evidence clearly contradicting the homo-
geneous nucleation hypothesis is forthcoming, then there would seem to be
strong enough grounds for conciuding that -40C s the temperature to which
vater droplets of cloud-particle size must be supercooled in order that there
shall be nearly unit probability of the formation of an ice embryo of critical
size somevhere within each drop, that is, that the cloud there undergoes spon-

taneous nucleation,

13, A remark on the icing of eircraft

The theory of homogeneous nucleation may shed some light on one important
aspect of the aircraft icing process. In those diecuesions of icing with
vhich the writer bhappens to be familiar, no clear explanation seems to be of-
fered for the reason why the accreted supercooled water freezes after deposi-
tion even though it may have remained liquid for a long period prior to en-
trance of the aircraft into the given cloud. Or, if an explanaticn is given,
some allusion is made to the shock of the impact and the reader 1s reminded of
the allegei role of mechanical disturbance in initiating freezing in bulk su-
percooled water,

If, as the writer has here been attempting to show, the existence of the
supercooled cloua is primarily due to the negligibly small rate of homogeneous
nucleat{on above -4OC then the reason why water freezes after deposition though

not before 1s that the free energy berrier to the formation of a critical em-~
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bryo on which the crystallization may begin is no longer an obstacle to freet-
ing when the drop impinges on the surface of the airfoil. If a eheet of ice
is already present. on the airfoil, tbe impinging supercooled water merely
drins that {ce lattice in the ordinary vay in whichk water freezes on lattices y
of small curvature, If ice does not preexist, as at the momamt of first pen-
etration into the icing region, then the microscopic roughness of the alrfoil

surface, or perhaps some adsorbed foreigh material, is almost certailn to ini- |

tiate freezing by heterogeneoue nucleation somewhere within the water film

covering the leading edge. Once a microscopic lattice is created anywhere |
along the wetted surface of the airfoil, freering will spread epidemically

throughout all portions of the water film continuous with the locus of nucle-

ation. After that, the freezing of impinging drops occurs by the sort of

process firgt outlined.

The essential difference between the film of water on the airfoil and
the same mass of water in the form of many cloud drops is that in the former
case only one successful nucleation event need occur within ivs total volume
to produce complete cryetallization, while in the latter case some supercool-
ing will persist until there has occurred one nucleation event within each of
the individual drops. That is, the difference is essertially topoiogical,
having t¢c d¢ with the connectedness of the water, If 1t 1s indeed true that
average cloud drops cannot be expected to be nucleated once within tbeir full

lifetime of the order of minutes at temperatures much above -LOC (recell gen-

eral implications of Table 1), then one can understand why alrcraft icing ls !

observed above that temperature but is almost unkncwn below that temperature,

13. Summary
Previous investigations of the -4CC transition in supercooled water drops
have been shown to contain a variety of inaccuracies which have had marked ef-

fect on predicted nucleation rates, After a number of modiflcations were car-
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ried cut in existing approaches to the homogenesous nucleation problem, three
different ectimates of the specific surface free ensrygy of a water-lce inter-
face vere used to estimate the tecmp=arature dependence of the dropwise nuclea-
tion rate, Of the tﬁxee r=sults, the one in which the most confidence can be
placed ylelded a predicted transition temperature substantially too high,
-26C, but was based on a correction for surface distortion effects that is
recognized to be quite crude. There geems little immediate hope for gaining
improved precision in the estimate of the distortion correction on tteoreti-
cal grounds, since the required calculation poses very formidable difficulties.
The fact that one rough estimate of the distortion energy has led to a
predicted transition threshold even &s close to the observed value as -26C is
tentatively taken to indicate that the -4OC transition is an effect of homo-
geneous nucleation whose precise explanaticn will have to await further devel-

opments in the solid-state physicse of ice,

14. Suggestion for future research

It vould be of the greatest interest to have sowe sort of experimental
deteruination of the surface free energy of a water-ice interface. Although
a direct evaluation of this parsmeter for supercooled water seems quite out
of question, it may not be entirely impossible to determine this guantity at
the triple point of water by e2mpioying sufficlently elaborate thermostatic
control, It should be clear from the previous discussions of the d'latortion
energy correction that {mmeasurable improvement in one's understanding of the
nucleation problem would result even from a reasonably accurate determination

—

of ()5 at the tripic point.
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II. On the Electrical Conductivity of the Lower Stratosphere

Abstract --The reality of the decrease of conductivity with
height observed at the top of the Explqrer IT flight is supported
by some apparcntly overlooked measurements made earlier by Idrac.
The cause of this decrease is discusscd and an hypothesis of con-
vective updraft of Aitken nuclei from troposphbere to stratosphere
is examined. The hypothesis appears incapable of aczounting for a
steady-state worldwide population of stratospheric nuclei suffici-
ent to satisfy existing observations. It is urged that Idrac's
measurements be repeated on a more extensive dasis using more mod-
ern sound ing technigues.

1. Intrsiuction

One of the many results of the 193% stratosphere dballoon flight of the
Explorer II vas the observation of a surprising decrease of aimuspheric elec-
trical conductivity with height through the top few kilometers (19-22 km) of
that flight. Gish and Sherman (1936) have discussed this feature of the
sounding and Gish (1939) has made some suggestions as to its possibdle ori-
gin; but no further attention seems to have dbeen given this matter until
Holzer and Saxon (1952) recently examined, on theoretical grounds, the cur-
rent distridbution that may dbe expected to exist above and around an active
thunderstorm. They approached this prodlem ir an effort to check the eignif-
icance of the important thunderstorm electrical measurements made by Gish and
wait (1950).

Holzer and Saxon employed the assumption that atmospheric conductivity
increases exponentially snd hence monotonically with increasing beight through
the troposphere and stratosphere all of the way up to suxe conducting layer in
the lower ioncsphere, In making this assumption, these authors did not over-
look the Gish und Sherman observations of a conductivity minimum, but they d41d
choose to omit this feature from their analysis on the basis that it is not
knovn whether this represents a commonly occurring condition of the lower
stratosphere or whether it vas an anomaly peculiar to the Explorer II sound-

ing. Holzer and Saxon point out that a shallow layer of low conductivity
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would not alter their principal conclusione concerning the lonopheric destin-
ation of the currents measured by Gish and Wait (1950), but emphasize that
such a layer could have a muarked effect on certain other atmospheric electric-
al phenomena, notably the vertical field fluctuations observadble at the earth's
surface at distances of the order of many tens of kilometers from active thun-
derstorms,
2. Earlier evidence for a stratospheric conductivity decrease

Holzer and Saxon's discussion has pointed up the uncertainty as to whether
a stratum of low conductivity is a common, or indeed even a real feature of
the stratosphere and has prompted the present writer to call attention to an
earlier and apparently forgoiten study of the electrical state of the lower
stratosphere in which there wes found evidence for a decrease of conductivity
similar to that found in the Explorer II sounding, Idrac (1926) made a num-
ber of balloon soundings of the vertical electric field intensity over Trappes,
France during a single day in June, 1926, Three of hie releasecc led to sound-
ings extending above 13 km and {n these three Idrac found that the field in-
tensity, after decreasing in the characteristic manner through the tropos-
phere, started increasing above the tropopause. The average field strength at
8 kum for all of his flights or that day wus only 2.3 v/m, while i{n the region
above 13 km it reached values as high as 40 v/m. Assuming a uniform vertical
current density for all heightes reached by Idrac's balloons, one finds that
these intensity values ifmply a conductivity decrease by a factor of almost
twenty 1in going from 8 km up to “his level of maximum local field strength
above 13 km. Fortunately, ome of Idrac'se flighte extended to 20 km and re-
vealed that tne riela 1ntensity decreased again above 16 km, falling to
1.2 v/m at 19 km, thus showing that the conductivity d1d not remain low that
day throvzhout the vertical extent of the stratosphere ove:r France,

These observations by Idrac seem not to have been known to Gish and Sher-

wan, with the result that there has probably been less significance attached
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to the Explorer II results in the 19-22 km region than might otherwise have
been the case, Idrac's findings seem particuiarly valuable i{n that they re-
fer to a region remote from that in which the Explorer II flight wes made
and to a time several years earller, thus casting doubt on any supposition
that the sort of low conductivity stratum found by Gish and Sherman was an
anomaly peculfsr to that sounding., Furthermore, Idrac's measurements suggest
that there may be only a rather thin layer of lov conductivity in the strat-
osphere, while the Explorer II observations left this important point inde-
terminate. This latter contribution of Idrac's work strengthens the position
taken by Holzer and Sexon (1952) with respect to the slight importance of any
regions of low conductivity in altering the upwvard flow of positive curront
from thunderstorm to ionosphere, while the former contribution (indication of
worldwide extent of the low conductivity layer) points to the need for further
study of the suggestion made by Holzer and Saxon that such a layer may strong-
1y influence surface field-strength fluctuations far from active thunder-
storms and squall lines.
3. Possible causes of the conductivity minimum

Despite the lack of agreement between Idrac's and Gish and Sherman's ob-
servations of the altitude of the base of the region cf low conductivity,
their agreement as to the presence of such a region in the lower stratosphere
vould seem to Justify some attempt to find an explanation for its existence.
Atmospheric conductivity is almost entirely controlled by the small-ion dens-
ity of the air, and this density is in turn controlled jointly by the rate of
fon formation (by cosmic ray fonizations followed by molecular atiachment)
and by the rate of destruction (by recombination processes and by attachment
to Altken nucleil, forming relatively immobile large ions); hence one must
search for some phenomenon capable of locally altering one or both of these
rates in the stratum under consideration. There would appear to be no basis

for telieving that theie might be any local decrease of cosmic ray bombardament
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here, nor any local anomaly in the molecular attachment rates or in the re-

. combinative processes for small ions, 80 one is led to seek an explanation
for the low conductivity in terms of the effect of some local concentraticn

of nuclei in the lower stratosphere. Gish (1939), in first discussing this
type of explanation,; suggested the possible role of nitrogen pentoxide whick

|

has been detected spectroscopically in the region from 16 to 40 km. Gish ‘
(1951) has also noted that ozone was found to be unusually abundant near the |
|

top of the Explorer II sounding; but he has not indicated how either of these

substances might ever appear in the form of particles large enough to serve a
as large-ion nuclei, i

L. Convective transport of nuclet

The vriter has been led to cons!der guite a different hypothesis which
seems, at first inspection, qualitatively more probable than those advanced

by Gish., This hypothesis would account for the presence of a stratum of Ait-
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ken nuclel {n the lowest portion of the stratosphere in terms of injection of
nucleus-rich alir into the base of the stratosphere by thunderstorm updrafts

that sweep the air up through the troposphere from the lower levels of higher

nucleur density end then expel this air {nto the stable base of the isothermal

£ MRS ) T

C . region. The nuclei so added from time to time by thunderstorms around the
vorld would not remain forever in the lower stratosphere but would slowly
leave this region by virtue of the joint action of fall-out and turbulent i
diffusion, The critical test of the hypothesis thus becomes that of inquiring
whether the processes of addition and removal might reasonably be expected to

come t0 balance with a steady-state nuclei count at the base of the strato- L

sphere sufficient to explain the sort of decreased electrical conductivity J
found by Idrac and by Gish and Sherman,
5. Thunderstorm heights

First it way be noted that the heights to which thunderstcrms exterd are

in reasonable agreement with the convective hypothesis, at least for the Idrac
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obeservations of a low-conductivity layer with its hase near 13 km. The aver-
age heights of the tops of thunderstorms observed by radar during the Thunder-
storm Project (Byers and Braham, 1949) vas slightly over 11 km, and 40 per
cent of &ll otserved storms built up to 13 km or above. It 18, of course, no
mere accident that the base of the stratosphere coincides closely with the
maximum altitude reacked by thunderstorm urdrefts since the stable density J
distribution above the tropopause precludes appreclable growth into the strat-

osphere,

The location of the low-conductivity layer in the Explorer II sounding
is higher than can be accounted for in terms of aversge thunderstorus of mid-
dle-latitudes, and particularly so for the November late on which the flight
vas made, Examination of the temperature distribution prevailing during the
flight (Brombacher, 1936) reveals that a double tropopause existed over
South Dakota on flight day. The lower inversion began at 11.5 k= and the
upper began at about 18.7 m. This plus the fact that the winds nsar the top
of the flight were southwesterly suggests that the balloon may have been in
air that had recently come from lower latitudes of the Pacific area where
thunderstorm convection is better able to transport air to heights approach-

ing those at wkich the Exglorer II encountered the decrsase of conductivity.

Hovever this necessity of an appesl to & tropical origin of the nuclel over
South Dakota must be regarded as a weakness 0f the thunderstorm hypothesis
and if further measurements of stratospheric conductivity should reveal that
the average level of the minimum agrees more closely with that found by Gish
and Sherwan than with that indicated by Idrac's work, one could not even con-
sider the convective expianation here proposed.

6. Rate of convective transport of nuclei

The first step in a gquantitative check of the convective hypothesis con-

eists in estimating the average worldwide rate of thunderstorm transport of




T T W T e e W

s AT T ..

i e ST AP,

-58-
nuclel up to the base of the stratosphere. Using data on the average ver:ical
distribution ¢f Altken nuclel based on twenty-eight balloon fligauts in the
troposphere (Landsberg, 1938), and combining these with some recent estimates
of the vertical distridbution of thurderstorm inflow rates (Braham, 1952), one
finds that, during the entire lifetime of an average thunderstorm cell of the
uiddle-latitude type considered by Braham, about 3 x 1020 nuclel may be ex-
pected to enter the updraft. Cf this total, almost three-fourths of the nu-
cle!l are found to enter the cell in the O-1 km layer. At greater heights,
vhere the mass of air entrained 1is larger than in the surface layer, the nuclel
count has fallen off so much that the weighted average influx of nuclei is
much less than in the 0O-1 km interval.

Not all of these 3 x 1020 nuclel are to be regarded as reaching the out-
flow region at the very top of the storm, however. A certain number will
serve as condensation nuclei{ and will thus be largely removed by the precip-
{tation process; but this number is so small compared to the tctal number of
Altken nuclei (most of which are too small to be activated for growth) that
it may be ignored here, Second, relative mntions of nucleil and cloud drops
vill remove some nuclei by accretion, but this mechanism will also be ignored
here on the ground that the collection efficiency for this capture process
¥ill be very low in view of the small eize of the nuclei., The third process,
vhich cannot be {gnored, is that of horizontal outflow of updraft air prior
to its reaching the tropopause, Again Braham's data on mass-exchange in
thunderstorms provides a basis for an estimate, Braham (1952) finde that »f
the total of 9.0 x 1010 kg of alr entering an average storm throughout its
duration, only 1.8 by 1010 kg flows out at the 200 mb level (about 12 ¥m).
Thus, one way regard only 1.8/9.0 of the total of 3 x 10°° nuclel, t.e.,
about 7 x 1019 nuclel, as being expelled from the stcrm top i{nto the lower
layers of the stratosphere, It muast be admitted that preseat igrorance of

the detalls of the kinematics of the outflow pattern at these levels leaves
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doubt as to vhether even this latter number of nuclel way safely be assumed
to remain at the outflow level rather than to subside back into the upper
troposphere, but this assumption will be made here,

Taking the average lifetime of a thunderstorm cell as about one hcur
(Byers and Braham, 1949), and using Gish and Wait's (1950) estimate of 3 x
10’ storme as the average instantaneous rate of occurrence of thunderstorms
over the entire globe, one finds an average rate of stratospheric addition
of 6 x 1017 nuclet per second for the whole world. Overlooking the fact that
this rate of transport must certainly decrease rapidly with increasing lati-
tude to nearly zero values in both polar regions, one finds that for the en-
tire area of the earth, 5 x 1018 cma, the average rate of thunderstorm in-
Jection of nucleil into the base of the stratosphere may be of the order of
10 nuclei/cm? sec,

7. Rate of fall-out of nuclel

Having estimated the rate of addition of nucleil, the next step is to est-
imate the rate of removal in order to compare these two rates as a test of the
convective hypothegis. Gish and Sherman (1636) have given estimates of the
density of nuclei requirad to account for the low conductivity in the 19-22
km interval of their Explorer II meecurements; 80 in spite of the fact that
this interval lies several kilometers above the level to which one may expect
thunderstorms to penetrate in middle latitudes, and in spite of the author's
warning that not too much quantitative significance should be attached to
their nuclei estimates, these values will be usec here as the only available
estimate of the nuclear densities in the lower stratosphere, Certain addi-
tional deductions can be made from Idrac’'s data, and note will be taken of
thesge later.

Most Altken nuclel are less than about 2 x 10™ cm in dlameter (Junge,
1951), so Stokes' lav may be applied with reasonable eccuracy. Assuming a

mean density of 2 gm/cm} for the nuclear substances,; the particlec may be ex-
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pected to have a maximum fell velocity of only about 10-2 cm/sec, 1.e., less
. than a meter per day for even the largest. The average instantaneous rate of
fall-out per unit horitontal area of the stratosphere is then given by tke
product of this velocity and the prevailing nuclear density, which we uay
take as 2 x 10° nuclei/em’ (Gish and Sherman, 1536). Thus the dcvnward grav-
itational flux of nucle!l 1s only about 2 nuclei/cmaeec. Tuis is almost an
order of magnitude less than the estimated rete of addition of nuclel by up-
drafts, so 1{f fall-out were the sole mechanism capable of removing the nuclel
from the stratosphere, one could conclude that the convective hypothesis was
confirmed by the above estimates; but in addition, downward turbulent diffu-
sion must be considered.
8. Turbulent diffusion of nuclel
The rate of vertical turbulent diffusion of nucle!l in a layer depends on
the eddy diffusion coefficient D, and on the vertical density gradient of the
nuclet, dn/dz. lettau (1951, Fig. 2) gives 107 cm 2/a::c for the diffusion co-
efficient at the 15 km level, and from Gish and Sherman (1936, Fig. 7) one
finds the density gradient in the layer of low conductivity to be about 10'2
nuclei/cmh. Eence for this combination of data the turbulent flux is

D %—2 = (loﬁcmasec'l) (lo‘ecm'l‘) = ].Oz’cm"asec'1

downvard, This rate is three orders of magnitude greater than the rate of
fall-out, so it appears that one may quite safely n=glect fall-out as compsred
with diffusion. But more pertinent to the present dlscussion is the fact that
the estimated rate of downward diffusion of nuclel 1s some sixty times greater
than the estimated rate of addition of nuclei by thunderstorms (15 nuclei/cm2
sec.). One seems forced to ronclude that the convective transport hypothesis
is quantitatively inadeguate for accounting for a uniform, worldwide stratum
of high enough nucleer dernsity to fit the Explorer II conductivity measure-

ments,
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9., Discussion

Having found this negative result in the effort to check the convective
hypothesis, it is interesting to note that if one seeks polntes in the compu-
tations vhere some wmodification might be made, these appear to be almost en-
tirely changes that only strengthen the evidence against the hypothesis,

First, the data on nuclear densities in the troposphere (landsberg,
1923) were obtained from balloon flights made over well settled areas where
industrial pollution tends to give counts unrepresentatively high for the
world as a whole, 80 any revisions here would certainly lower the estimated
convective transport rate.

Second, the assumption that all of the air diverging from the thunder-
storms a% the 200 mb ievel remained, along with ite suspended nuclei, at the
level of outflow cannot be defended too well, A thunderstorm that builds up
to the tropcpause probably succeeds in locally pushing up the stable overly-
ing stratospheric air but complete intermixing of the outflow with stratoe-
pheric air, as assumed above, 18 a rather unlikely extreme, If any correc-
tions could be made here they would undoubtedly lower the effective rate of
convective addition o€ nuclei.

Third, an attempt to incorporate Idrac's findings into the estimate of
the dowvnward diffusion of nuclei from the underside of the stratum of low con-
ductivity yields an even higher rate of removal than was found above from the
data of Gish and Sherman, Idrac reports a nearly twenty-fold increase of
field strength between 8 km and about 14 km, which implies a roughly equal
factorial decrease of conductivity in this interval, Gieh and Sherman (1936,
Fig. 4), on the other hand, found a conductivity decrease of a factor of only
tvo in the interval from 1 km to 22 km., This difference in implied nuclear
gradients is thus seen to amouni to about a fector of five, making it corres-
pondingly wmore uniikely that thunderstorm updrafts are steedily counterbal-

ancing downward diffusion of nuciedi.
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¥ourth, one might choose to use the eddy diffusivity vaiue corr;syonding
to tLe interval in which the conductivity decreased in the Explorer II sound-
ing (19-22 km) rather than to use the value for the 15 km level as was done
above {n an effort to simulate conditions prevailing just above the tropo-
pause, Iettau (1951) glves 10°cu®/sec for D at tals level (down a hundred-
fold from D at 15 km), so combining this with the previously considered val-
ue of the densiiy gradlent ooms obtalns an estimated diffusion rate of 10 nu-
clei/cufsec. This is Just the estimated transport rate, so this fourth re-
vision 1s the first one to favor the convective hypothesis, But since this
revision requires that one deal with altitudes too great to match observed
thunderstorm heights for any but tropical latitudes, it provides no real sup-
port for the convective hypothesis anyway. It is, hovever, interesting to
note that Lettau (1951) hae euggested that the very rapid decrease of D with
height just above 15 km must tend to produce what he terms a "dust horizon"
at this level, and cites some light-scattering observations in support of that
contention. This theoretical and observetional evidence for some sort of zone
of accumulation just above the tropopause does give further suppcrt to the
view that a layer of high nuclear density and hence low conductivity is the
rule rather than the exception in the lower stratosptere but, dces not cleri-
fy its ultimate origin.

In all, it would seem to have been shown here that the convective hy-
pothesis for transport of nuclel to the stratosphere, though qualitatively
guite plausible, is not quantitatively compatible with such observations of
the conductivity minimum as exist at present,

10. Concluding remarks

That Idrac's observations of the vertical variation of the electric
field intensi‘y should constitute the only check on the decrease of conduct.
ivity with deight 1n the lcwer circtesphere found (n the Eyplerer IT flight,

and that evenr this check should have gone so long unnoticed szen regrettable.
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Present-day balloon-sounding techniques should be reedily capable of provid-
ing data on the behavior of the field up to almost 30 km. Hence the writer
vishese to recommend that repetitions of Idrac's mecasurements be carried out
at enough different localities and times to determine vhether a layer of low
conductivity is in fact alvays present just above the tropopause, and if so
to determine at what heights it lies ani whether it 13 uniform or patchy in
nature, A serles of such soundings might clarify weny of the questions
raised in the present examination of the convective hypothesis of the origin
of such a layer. Such weasurements would also shed light on the interesting
suggestion (Holzer and Saxon, 1952) that a layer of minimum conductivity
could be responsible for exaggerated surface field fluctuations far from

active thunderstorms.
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III. A Note on Erroneous Cloud Physical Applications of Racult's law
Abstract--It is pointed out triefly that an error has appeared
persistently in the form of Raoult's law used in analyses of the
lowering or the vapor temsion of cloud drops due to the presence or
diseolved solutes., The magnitude of this error is shown to become
as great as 191 per cent when the sclute is sodium chloride, At-

tention is called to the way in whick thls error wvas incorporated
into an analysis of condensationsl grovth of cloud drope by Howell.

1. Introduction

The purpose of this note {s to call attention to an error which has ap-
peared repeatedly in statements of Raoult's law in the meteorological liter-
ature and which has led to certain inaccuracies in at least one recent paper

on cloud physics.

2. Raoult’s lav

When m' aoles of & non-electrolyte are dissolved in m woles of water,

the relationship between the vapor tension e' of the resulting snlution and

the vapor tension e of pure vater 1s given by Raoult's law as

e'-¢ ==-_u ,
e m' +m ' (1)

vhich way alsc be rewritten as

_e_i = m . (2)
e o'+

Equation (2) states that the ratio of the vapor tension of the solution tn
the vapor tension of the pure solvent equale the mole-fraction of the solvent

present in the solution.' In sc-called ideal solutions, the lav is (by defin-

ition) exact at all concertrations, and in real solutions of non-electrolytes

it holds to a good degree of approximation at low and moderate concentrations

(Daniels, 1948).

o g

When lowering of the vapor tension of a solution is due, on the other

band, to an electrolyte, equations (1) or (2) r> longer apply because of dis-

soclation of the solute, There !8 not at present unanimous &greement as to
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the exact nature of the solutes present in hygroscopic nuclel in the atmos-
phere, but the substances most frequently suggested as important (sea salts,
nitrous acid, sulfuric acid) all have in common the property of dissoclating
into ions in solution and hence must give vapor tension reductions dirfferent
froa those predicted by (1) or (2), which apply only to non-electrolytes.
Despite this fact, Raoult's law ic given only as one or the other of the
above equations by Eaurwitr (1941), Lowell (194%5), and again quite recently
by Neuberger (1951). (It might also de noted that, in the last reference,
the symbols corresponding to m and m' in (1) and (2) are incorrectly identi-
fied with the mmsses raiuer than with the numbers of moles of solute and sol-
vent.) The same form of Raoult's lav appears in the recently revised Smith-
sonian Meteorological Tables (List, 1951), and forms the incorrect basis for
all of the equilibrium supersaturations over solution droplets tabulated on
PP. 375-379 of those Tables.

For electrolytes, Raoult's lawv must be modified to the form

el -e =- im' ’
e in' +m (3)

vhere 1 1is a factor, often called tue van't Hoff factor, vhich varies both
vwith the chemical nature of the electrolyte and with the concentration of the
solution. In the limit of infinitesimal conceniration of the solute, i be-

comes simply the number of icns comprising one molecule of the solute (e.g.,
two for RaCl, three for MgCly).

3. The van't Hoff {1 factor

As the solute concentration increases from zero, the value of the van't
Boff factor first decreases, but then begins to rise again for moderate con-
centrations and, for most strong electrolytes, attains values in excess of
the number of lons per molecule at concentrations near the saturation vaiue,
The latter effect 13 particularly marked in the cases of salta which charac-

teristically form bhydrates (e.g., MgCle.éﬂac). Tte Debye-Huckel “heory of

M—_
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interionic attraction gives a fairly zood explanation of the behavior of {
near z2ro concentration where i de:irasases with increasing concentration
(Daniels, 1548). At nigh concentrations it is belleved that the clustering
of the highly pclar vater molecules about the ions (particulerly about the
cations) ties up a large fraction of the total population of water molecules
to decrease appreciably the number of water molecules escaping per second

per unit area o? surface of the solution, the latter thereby bhehaving as 1if

g

there were an apparent ionic concentration greater than the actual value.
Since the variation of { with concentration is dependent upon the chea-
ical nature of the aclute in question, and since there is not yet couplete

agreement as to the nuclear substences operative under natural conditions, it i

would scarcely be in order:here to undertake an exhaustive examination of the 1
physical chemistry of any one nuclear substance or mixture. However, in or-

der to show how Raoult's lawv should be treated for whatever solutes ultimately

prove to be of chief importance in atmospheric condensation, the case of NaCl

nuclei is considered here in somewhat more detail than has besn done in the

e i Y LY

metecrological literature before, If sea salt nuclel should prove to be the

main atmospheric nuclej, then since NaCl comprises some 77 per cent by weight

of the mixture of salts present in sea water, the Raoult effect of that salt ”

vwill be of primary interest, tkcugh bgCle, present to the extent of about 1l |

per cent, will have to be considered carefully beczuse its property of form-

ing a hexahydrate will make it a quite significant factor in the physical

chemistry cf sea-salt nucleil under conditions of low relative humidity. :
It is possible to compute the van't Hoff factor as a function of molal-

ity for any given solute from the variation of the activity coefficient of
that solute with molality (Moore, 1950). The great wealth of data on activ-

ity coefficlents would Justify this approach oncs there is clear evidence
that some one substance {s of dominant importance in atwospheric nucleation,

but the method is gquite tedioue, involving as it do2s a numericel integration
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of the Gibbs-Duhem equation for each determination of {. As a more direct
aprroach available in the case of RaCl whose zffect on vapor tension has
been determined experimentally cver a vwide range of concentraticnsz, {-values
have been coumputed here from the observed magnitudes of the reduced vapor
tensions of solutions of NaCl. Tabulated values of this quantity are given
by Washburn (1926) for a range of molality of 0.1 to 6.0 (a saturated NaCl
solution is about 6.05 molal at atmospheric temperatures). Three additional
values needed for the very Low concentrations attained in the later phases
of drop growth vere taken from the measurements of Dieterici and of Smits
reported by Roth and Scheel (1923).

Table 1. Values of the van't Hoff factor, i, for

Aqueonus solutions of RaCl of molality M,

Mole-f=zction

M of NaCl 4
0.04% 0.0+ 2,00-
0, 0Olk 0.00080 1.96
0.070 0.00126 1.90
0.098 0.00177 1.86
0.1 0,0018 1.83
0.2 0.0036 1.82
0.4 0.0072 1.84
0.6 0.0108 1.85
0.8 0,01k 1.87
1.0 0.0180 1.89
2.0 , 0.0361 2,04
2.8 0.6505 2.19
5.0 0.030@ 2.66
6.0 0.1033 2,91

# 0,0+ 15 used here to denote the limit of infinite dilution.

Table 1 shows the values of i computed from these observed data, It

v g §




e

=68~

18 to be noted thai even at the minimum point, { equals 1,62, so the reduc-
tion of the vapor tension of a droplet containing a nucleue of RaCl ies at
least 82 per cent greater than the value implied by the erroneous form of
Racult's lav given by Haurwitz (1941), Lovell (1945), Reuberger (1951), and
List (1951). Kote also that near saturstion, 1 has become so large (due to
solvation of the ions) that an error of 191 per cent is made if these lomic
effects are neglected in calculating the Raoult effect. For the freguently
accepted case of sea salt nivclei, the correspond ing error would dbe notice-
ably larger at this high conceniraticn because cf the much more pronounced
hydration of the magnesium icas.
4., Kohler curvee for NaCl nuclei

That the forms of Raoult's law appearing in the literature cited are in
need of correction is indicated by the fact that this error has been carried
into the very valuable work of Howell {1949) on clcud drop growth, Curi-
ously, the neglect of fonic effects seems to be an error appearing in the me-
terorological literature of just this country. Kohler (1936) in hie work on
the vapor tension of droplete assumed a constant '‘diesociation factor'' (as
defined for the now abandoned Arrhenius theory) of 0.75 for his assumed NaCl
nuclei, ¥right (1936) considered aeveral chemical possibilities for his nu-
cle{ and used constant factores to correct for the effects of ionization,
Hie etatement that, "The hygroscopic factcr...may very with the concentration
of the solution, particularly when the solution becomes very dilute and the
phenomenon of diesociation occurs", raises some doubt, however, as to whether
he held & correct view of the underlying physical chemistry of Raoult's law.
Best (1951), in a recent paper on drop growth, merely employs Wright's con-
stant correction for solute dissoclation.

Using the values of the van't Hoff factor gilven in Table 1, (l.e., ef-
fectively using the experimental valueg from which Table 1 was derived), the

equllibrium supersaturation over droplets containing various specified nimbers

p—
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of moles of NaCl were computed for comparison with Howell's values (present-
ed by him as his Figure 1), Each Kohler curve corresponding to a given nu-
clear size vas pushed down as a result of the correction of the Raoult's-
law error made by BHowell, and i{ts peak value of critical supersaturation
was moved towards a larger drop-size. The corrected values of peak super-
saturation are only about three-fourths as large as those found by Howell
(not to be confused, however, with the supersaturations found by Howell in
the course of his numerical integrations of the drop-growth equation, for
comments on which see beiow).

The important question arises: What effects on Hovell's computed growth
rates would follov from a corrected treatment of Raoult's law? In an attempt
to ansver this, the writer calculated, from Howell's paper, the parameters
needed to evaluate the growth rates for several different nuclear sizes and
then sought to compare these rates with those obtained with the incorrect
form of Raoult's lav.1

The degree of supersaturation, S in Howell's nomenclature, is a quantity
which must be known before a calculatior of growth rate can be made in any
glven case., By reading off the S-values from Howell's growtn curves for var-
ious drop sizes and nuclear masses of interest, and using these to calculate
corrected growth rates, apparent errors of from 25 per cent to 30 per cent in
rates (at the points of maximum error) were found. However, this vas a fal-
lacious approach which overlooked the principal contribution of Howell's en-
tire analysis, namely the {reatment of S as a dependent variable in the growth
equation. The degree of supersaturation is itself strongly influenced by the

vapor tension of the drops (in reality, and also in Howell's admirable anal-

yeis of the growth problem), so to use Eowell's supersaturations along with

1 It may be worth noting here for the benefit of readers concerned with the
theory that there aprears to be an errcr of algebraic sign in Howeil'!s forme-
ulaticn of the cowpensated diffusion coefficient as well as a discrepant

location or a factor of 21 in the asymptotic form of this coefficient fcr
very suall drops.
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the corrected vapor tensions 1s not permissible since this would appreciably
overestimate the error in the growth rates.

There ssems to be no other way to determine exactly how far off Howell's
growth rates may be than to redo his integrations. This would entail an
smount of labor whilch would carry this note considerably beyond its intended
sco}e, 80 no final assessment of the Raoult's law error in Howell's wvork is
given here, Kévever, fron certain numerical-physical arguzents, the writer
18 led to suspect that in the regions of most rapid drop growth, Houell's
rates may be too low by about 10-15 per cent. If so, the later history of
drop growth might be sensibly affected, since it is exactly at this stage of
cloud formation that the peak supersaturation is determining the lower limit-
ing size of nuclel! (and hence the total number of nuclel) ic de aclivated
for rapid growth, For the regicz cf grovth beyond A few microns, dilution
has proceeded so far that the entire Raoult effect vanishes; hence the latter
phases of Howell's theoretical growth histories are not bere in question ex;

cept inasmuch as they may be affected by the neak supersaturation.
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IV. The Shape and Aerocdynamics of large Raindrops

Abstract--The physical factore which might be expected to

control the shape of large raindrops are surface tension, hydro-

static pressure, external aerodynami~ pressure, elec:rostatic

charge, and internal circulation. Each of these 18 examined

quantitatively and the conclusion reached that only the first

three play important roles in producing tte deformation charace

teristie of large radndrops. By analyzing an actual drop photo-

graph, the distribution of aerodynamic pressures is deduced and

i{s shown to imply that separation in the airflow about a rain-

drop has significant effects ox drop shape and on & number of

physical processes occurring at the surfaces of falling rain-

drops.
1. Intrcduction

It has been known for over half a century that large raindrops do not
possess the streamlined form popularly described as the "teardrop” shape.
High-speed photographs (Flower, 1928; Edgerton, 1$59; Blanchard 1950) reveal,
instead, that a drop falling tbrough the air exhibits a marked flattening on
its lower surface and smoothly rounded curvature rather than ccnical taper
on its upper surface, For an example, see Figure 1 here. This long-recog-
nized peculiarity of large drops has never be=en adequately explained, and only
very few attempts to elucidate this matter have even been undertaken,

Although J. J. Thomson made, in 1885, some observations on the shape of
ligquid drops woving through various fluids, the first serious attempt to ex-
anine the meteorological problem of the shape of large raindrops appears to
have been made by Lenard (1904), Using a vertical airstream with water drops
suspended freely therein, Lenard carried out a number of experiments on tcr-
winal velocities, deformation, and breakup. EHe noted that a finite “ime ,
somevhat greater than a tenth of a second, was required for a large drop to
attalin its equilibrlum degree of deformation and sugges*2d that tiite might be
due to cen*trifugal distortion sot up by internal circulations which, for in-

ertial reasons, took a measuradle amcunt of t!me to become established by the

surface friction of the air rushing past the drop, To the preesent writer's




Figure 1., High-speed photograph of a large
vater drop falling at terminal velocity. Dia-
meter of the drop calculated as a sphere is
6 im, velocity of fall 8.8 m aec'l, he ight
of fall 12 m., Photograph by Dr. C. Magono,
Hokkaido Imperial University; provided through

the courtesy of Dr. U. Nakaya.
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knovledge, no extension of this interesting beginning of the etudy of the drop-
:hnpe problem vas made during more than forty years following Lenard's vork.
Flower (1928), in a study of falling speeds had found it necessary to appeal
to lenard's theory of centrifugal distortion; and even when Lavs (1941) car-
ried out his very extensive measurerents of the terminal velocity of water
drops, no other theory of drop deformation was available to be invoked to ac-
count for the distortion of shape, and this despite the fact the reality of
Ienard's postulated circulations had never been demonstrated,

Spilhaus (1948), in a short paper on raindrop shape and falling speed has
made the only other contribution to this problem that has come to the writer's
attention., Spilhaus suggested that the vertical flattening of large drops is
due to the combined action of surface tension and aerodynsmic pressures. Due
to the deficit of external pressure around the wvaist of a drop, "the drop
nust deform so as to reduce the ratio of its area of cross section to perime
eter in the vertical plane” in order to give the surface tension an opportun-
ity tu equilibrate the aerodynamic forces, Spilhaus uway not have been aware
of lenard's earlier vork, for he neither mentions it specifically nor gives
any ccnsideration to the centrifugal effects which Lenard held to be solely
responsible for producing drop deformation., Neither Spilbaus nor Lenard of-
fered any explanation of why large drops are not symmetricel about horizontal
planes through their centers, and Spilhaus explicitly omitted this asyumetry
from bis theory i{n order to be able to use experim=.::Zal data on drag coeffi-
cients of oblate ellipsoids. As will be pointed out belor, Spilhaus used an
incorrect relationship for determining the surface pressure increment due to
surface tension and elso erred in ignoring the sisniyicent effects of internal
hydrostatic pressure gra:lexnts present in a drop falling at terminal velocity.
With this background to tte present problem, it seems approprlete to conclude
tuat the lssues involvedl are far from settled, In tire present paper, some

furthe:: coatributions to tkis problem wi'.l be made and thc resuits used to
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gain an {mproved understanding of some important features of the airflow

about large raindropa.

2, Factors controlling raindrop shape

In the course of the present study an effort has been made not only to
gain a better appreciation of the role of centrifugal distortion, surface
tension, and aerodyramic pressures, but alsc to obtain a clearer recognition
of the possible iwmportance of electrostatic charges and internal hydrostatic
pressure gradients,

The only reason that wvater drops can exist at all as mechanically stable
systems is that surface forces at the water-air interface continually try to
uinimize the interfacial energy by tending to minimize the interfacial area,
When this effect of surface tension acts alone, or nearly so, as !n the case
of cloud, drizzle, and even small raindrops, it succeeds in molding a drop
into the shape characterized by minimum surface-to-volume ratio, 1i.e,, a
sphere, When, however, other factors than surface energy contribute signifi-
cantly to the total energy of the drop, minimum total energy may be, and in
fact is, inconsistent with perfectly spherical chape. One might hope to as-
semble all of these other energy factors, express matheuwatically their contri-
butions to the total drop energy and then determine the eauilidbrium shape by
uininizing the total energy with regpect to some suitable shape parameter or
parameters. If the gravitstional effects (hydrostatic pressures) vere the
only additional energy Tactor, thie might de done here jlust as it has been
done (by tedious numerical processes) for the case of perdent and sessile
drops (Aaam , 1949). However, anyone fully cognizant of the difficulty of in-
corporating the aerodynemic factor into this type of approsch will underatand
that tke raindrcp skape problem will probably naver yield to any analyeis
vhich treats it as a claesical minimal problem. Certainiy this 1s so 1f that

analysis is to be carried out by manual ratber than electronic-comjutaiional




means,

Recognizing this, the writer has sought to approach the problem almul-
taneously frow two directions in order to converge ultimately upon a result
(deduced aerodynamic pressure distribution) whose correctness may be Judged
tolerably well by comparison with certain experimental results in the flelds
of fluid dynamics and cloud physics. The central 1dea in this analysis has
been to evaluate all of the factors controlling the pressure distribution
inside a large drop end then, using certain surface physical concepts, to
determine the surface pressure prevailing in the boundary layer Jjust outside
the drop surface, If the surface pressure pattern thus deduced is fcund to
be in reasonably good agreemrnt with aerodynamic principles (as will be shcwn
to be the case), then some confidence may be placed in the theory of drop
shape on which the calculations have been based. The logic of this approach
vill be further elaborated below.

Surface tension., Surface tension holds a rain drop together in the face

of a number of tendencies to disperse the wvater contained {n the drop. A con-
sequence of the net inwvard attraction exerted on a surface molecule by iae
molecuies lying deeper within the drop, this surface tension also produces
an increase of pressure within the drop over and above that prevailing in the
air outside, This increment in pressure, [&ps, at a given point on the drop
surface is given, in general, by

JAS 2 'K(I/Rl* 1/82) (1)
vhere 3’ is the surface tension of the weter-air interface and R; and R, are
the principal radil of surface curvature at the point in question (Adam, 1949).
The guantity [\ps can te either positive or negative if cne admits. sufficient-
ly arbitrary surface gevametry. A principal radius will here be regarded as
positive for the case whesc iue water-air interface is convex as vieved from
the air end Ap, then becomes the difterence between the water pressure just

inside the drop minua the (aerocdynamically controlled) air pressure just out-
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[ side the interface at the point in gueetion, It is to be noted that with
l . these sign conventions, the principal radii are each everywhere positive

(but not coastant), and /AAp, is everyvhere positive (but not constant) for

a stable drop such as that pictured here in Figure 1, When, as here, both

-

radii are of the same sign at each point, the surface is said to be every-

where synclastic. At a point where a general surface has radii of opposite

- S i s e et 9 gl

signs, it 1s there anticlastic., During the processes of breakup cf large,
unstable drope the surface passes from the wholly synclastic over into a ;
partially anticlastic form, as can be seen in photographs of artificially
induced breakup taken by Blanchard (1950). An anticlastic surface can be-
come 3dynamically unstable under certain conditions, but a synclaatic surface !
cannot, as has been shown by Rayleigh and others (see, for example, Champion
and Davy, 1936).°

In the special case of a spherical érop, Ry = Ry = r, where r 18 the
drop radius, and then

Pe ~ 2. (2)

This is the equation that was incorrectly applied by Svilhaus to his assumed

elliysoidal raindrop, using for r the radius of the circular cross section
in a horizontal sywmretry plene. Since this radius is only one of the two L
o principal radii of curvature at a point on the waist of such a drop, and

since the second principal radius is there smaller than the first, Spilhaus

underestimated the pressure increment, particularly for his very large, and
hence very much flettened drops. At the same time he neglected to consider
the fact that the surface pressure increment is different, in general, at

each different point of the drop surface, so his treatment of surface ten-
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sion effocte was doudbly invalid in its details, 2ven though acceptable in a
qualitative sense,
Since 5/ for a water-air interfice et OC is 75 dyne cm”l, (2) reveals

that & epberical drop of one miilimeter radius must have, at that temperature,
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an internal pressure that is about 1500 dyne cm™ &acove the external air pres-
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sure, For a drop of five millimeter radius, this increment would be only 300

dyne cmfa if the drop could somehow remain spherical; and at the other extreme,

for e cloud drop of five micron radius the interrnzal pressure is some 3CO mil-

S e T

libars above the external air pressure. In the case of the clowd droplet, the
pressure increment 18 so very large compared to hydrostatic pressure differ-
ences within the drop and to the minute aerodynamic pressures established at
terminal velocity that each of these factors (and also all others) may safely
be neglected in discussing drop shape. Hence cloud drops do simply assume

the shape implying minimum surface free energy, thus accounting for their

well known spherical form. But in the case of a raindrop at the uprer end of

the observed drop-size distribution, the surface pressure increments are only
of the same order of magnitude ag the pressure effects due to gravity and aero-
dynamic factors, so for this case, one must examine the shape problem more
thoroughly.

The technique for determining, in general, R1 and R2 from a photograph of
a falling drop will be explained below in Section 3.

Internal Lydrostatic pressure. As a drop falls at 1its particular terminal

velocity it 1s, by definition, no longer accelerating in the gravitational ,
fleld. In a coordirate system moving with that falling drop, an observer

vould regard the drop as being Just supported against gravity by the vertical

components of the aerodynamic norml pressure forces and the surface shear
etresses due to the apparently upward-rushing air. Conseguently, there must
exist within the drop a vertical pressure gradient of exactly the sort found in
any mass of fl»w1d at rest in a gravitational fileld. This hydrostaetic pressure
gradient appears to kave teen completely overlcowed by toth Lenard and Spilhaus,
Jet ia the limit »f very large raindrops the difference in hydrostatic pressure
between top And bottiom of a drop becomes quite important in controlling drop

shape., Thus, for a drop of 5 wm radius (considered by Spilhaus, thourn, of
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scurse atypical of natural rain), this difference in hydrostatic pressure is
about 1000 dyne cm2 , or about three times larger than the surface pressure
increment for a hypotheticaily spherical drop of this same radius. In the
range of normal drop sizes, the hydrostatic effect is of course smaller, while
the surface pressure contribution becomes larger: A drop of 1 mm radius has

a top-to-bottom hydrostatic pressure difference of 200 dyne cm™2

as compared
with its 1500 dyne cm‘2 surface pressure increment.

If one could show that there exist appreciable internal circulations in-
side raindrops, then it would be necessary to take account of the dynamic pres-
sure gradients that would inevitably be associated with these circulations.
This point will be considered below. Here it will merely be noted, as a rather
interesting point, that 1{f raindrop shape vere influenced only by surface ten-
sion and hydrostatic effects (with uniform external pressure), then the equi-
librium shape would be one that was flatiened on top and smoothly rounded
below, 1.e., Just the reverse of the relative curvature observed in actual
raindrops. This conclusion follows from the fact that the drop couid
tbhen only be ip ejuilibrium (internal pressures in hydrostatic balance) if the
surface curvature vere largest near the base and very small near the top, as
suggested in Figure 2. 1In several photographs presented by Spells (1952),
liquid drops falling very slowly through less dense liguids may be seen to
poosess exactly this sort of meridional profiles, The reason for thie ia, ee
will be shown later here, that at the low Reynolds numbers at which Spells'
drops were falling, separation does not occur in the boundary layer and hence
no dynamically lov pressure can develcp over the upper suriace. The conclusion
dravn here as to the shape a drop would possess if only surface tension and
gravitational effects were involved, is sufficiently contradictory to the ob-
served shape of large drops to imply clearly that other physical factors must

play an lmportant prart in the mcrphology of raindrops.
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Direction
of
fall

Figure 2, Equilibrium shape of a falling liquid drop if only
surface tension and hydrostatic pressure effects were significant,
Observed shape of large raindrops is approzimately that ob-

tained by turning above shape upside down.

The wvay in which on® may consider hydrostatic effecis quantitatively in
analyzing drop ehape will be discussed below in Section 3.

Electrostatic charges. Since it is known that hydrometeors of all siges

ranging from cloud droplets up to the largest raindrops may carry electric
charge, it is neceesary to consider the possibility that the drop-shape prob-
lem might be sensibly affected by this factor,

By electroctatic standards the water in a natural raindrop is a good

conductor. It can be shown (e.g., Jeans, 1941, p. 79) that a conductor car-
rying a local surface charge density (S’experiencea an outward-d irected ten-
sion (negative pressure) whose magnitude per unit area is given by

T = 27702, (3)
This electrostatic tension opposes the suriuce tcncion and thus constitutes
one of the several destabilizing factors that control drop morphology. Thkise
point assumes real interest as soon as one notes that on any conductor of
veriable surface curvature there is a tendency (counteracted only by external
flelds due to ncighboring charged bodles) for the charge to distribute itself
in such a manner that (5 becomes largest where tie surface curvature is

largest. Hence as a charged raindrop began to flatten out due to aerodynaulc
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effects, more of the total available charge would migrate towards the vaist
of the drop and would there prcduce a locally exaggerated suppression of the
surface tension effect which serves to oppcse the effect of low aerodynamic
presaures near the waist, Consequently the drop would have to deform still
more to increase the quantity (I/Rl + l/ha) around the waist in an effort to
attain pressure equilibrium. This further flattening would then not only
further decrease the external air pressure at the waist, due to continuity-
and Bernoulli-effects in the airflow, but would at the same time have the ad-
ditionally unfavorable effect of calling for still further bulldup of surface
charge density near the increasingly sharply curving vaist, This would, in
turn, oppose even more strongly the surface tension effects that are trying
to hold the drop together, and so, until the drop became so flattened as to
be torn apart by aerodynamic forces. This qualitative picture suggests so
vividly and plausibly a mechanism for the breakup of large raindrops in thun-
derstorm precipitation currents that it is perhaps regrettable that it must
next be shown that this interesting hypothesis is quantitatively tenshle onle
for quite abacrmal degrees of charging of the drops.

In the region just outside a point on the surface of a raindrop having
local surface charge density 3 , the electric field intensity is

E=Lmo, (&)

Now the greatest possible value that J can assume 18 given by (L) when E is
set equal to Ey, the dielectric strength of the surrounding air, Any greater
surface charge will induce corona discharge that will reduce E tc Z3. Ed is
pressure-dependent and is also sensitive to the geometry of the charged con-
ductors involved, but for the cloud physical problem at bind, one will be con-
servative (in ihe sense of admitting rather high values cf 3 and bence of T)
1f be puis E; = 30,000 volt en~} in (4), solves for the implied surface charge

density, and then inserts tiis into (3) to determine Lhe greatest value T can

assume before corona discharge sets in. Tue result is

« o= .

2
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Ty = 27735_2 = f:f._z .]ﬁ!‘_ = 400 dyne cm™2
a2 8w 8w
for the gea-level value Ed = 30,000 volt cwl = 100 e.8.u, At the 50C md
level, where E; falls to about 15,00C vclt cm™}, T, could be no greater than
100 dyne cm™2.

These electrostatic effects (decrements of pressure on passing from the
air side over into the water side of the drop surface) are of the order of
magnitude of A\ p, for large drops as calculated roughly above, but they have
been computed here for values of (G  that appear to be substantially larger
than any yet observed directly or indirectly. Thus a drop of 5 wmm radius
vith so high a surface charge density as to imply E = By at 1its surface would
bear a totel charge of gq = r°E, = 0,25x100 = 25 e.s.u., at the earth's sur-
face or about 12 e.s.u. at the 500 mb level. Gunn (1947 1950), however,
found by direct measurement from aircraft flying through precipitating clouds
that drops seldom bear charges in excess of 0.1l e.s.u. Furtherzore, his val-
ues were notable in that they are almosi an order of magnitude greater than
those previously reported for rairdrop charges as measured at the earth's sur-
face (Chalmers, 1949). Gunn (1949) has given an interesting possible explana-
tion of why raindrops may not be able to accumulate charge to such a degree as
to produce coxionn discharge of the type here tacitly assumed (isolated drcps
discharging into the air), |

It would seem, then, that attractive as is the electrostatic factor in
sxplaining drop sbape and breakup, such observaticns as do exist emphasise its
slight quantitative importance under normal circumstances. The electrostatic
factor should, perhaps, be held i{in mind as possessing possible significance in
processes occurring in the regions of highest electrical activity of thunder-
storms, but elsevhere it may be ignored on the bvasis of existing drop-electrice-
2l measuremenis. It msy be noted trat in the regions of peak fileld strength

within thunderclouds, the shspe problom must also be consldered in relatlon

peSm=——
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to the Macky effect due to external electric flelds (Macky, 1931), but this
case vill not be treated in the present paper,

Internal) circulations, Real fluid flouv is fundamentally distinguished

from perfect fluid flow by the fact that the former, but not theslatter, is
characterized by the "condition of no glip" at surfaces bounding the region
of flow. When the boundary ic a solid, as in the case of flow over an air-
foll, this condition implies that the air in contact with the boundary is at
rest relative to that boundary. But wher the boundary is the surface ol a
liguid, as in the case of a raindrop falling through tke air, this comdition
can be satisfied even if the surface layer of air is slowly moving, for the
interfacial 1iguid may be drifting downstream at some slow rate. In the
casz of a raindrop woving downward through air, any such surface circulation
induced by shear stresses exerted by the ambient eir would in turn induce
some sort of axisymmetric internal circulation.

Ienard (1904) postulated the existence of such internal motions and re-
garded them as capable of accounting for the drop deformations which he had
observed; but he made no attempt to demonstrate their reality experimentally
nor to predict their intensity theoretically. Qualitatively, one can say
that at least a very slow internal circulation is almost inevitable; for the

dynamic boundary condition pertinent here is that of continuity of tangen-

tial shear stress across the vater-air interface, and since vater's viscosity

is not infinite, at least a slight amount of internal motion seems certain

to develop. In the analysis that will be given below in Section 3 it will be

necessary to know whether the pressure at a point on the vertical axis of a

drop 1s equal to that at a point at the same height above the base of the

drop but lying Just inside the drop surface. In view of the relatively small

radii of curvature of the water-particle trajectories in any internal circu-

lations, one can shcw that horizontal uniformity of pressure would be notice-

ably sltered if sur’ace water velocities of much over one-tenth the drop's

- TR
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falling speed can be develop=d. Consequently it becomes indispensabla here
to obtain an estimate of the intensity of the internal circulation.

Bond (1927) has examined tiucoretically the protlem of internal circula-
tions for the case of a liguld sphere wmoving through a dissimilar liguid
medium for the case of Reynolds numbers in the Stokes law range, and has
showvn that a dimensioniess quantity,

k =2mM 4 34
Spm 4+ 347

is a weasure of the extent to waich the drag law for a drop of liguid of
dynamic viscosity ,«'moving through a wedium of viscosity 4 departs from the
drag lav for a rigid sphere moving through the same medium. Since M for air
N

is about 1.7110"’" polise at OC, while /A'for vater i{s about 170x10 " poise at
the same temperature, k is about 302/303 = 0,997 for the raindrop case, where-
as it would be 1.0CO for the case of a faliing solid sphere, Eence for drop
sizes whose termiral velocities lie within the Stokes law range, it appears
tkat internal circulations must be relstively insignificant. However, for the
sort of drops of primary interest here, the Reynolds numbers lie in the range
from about 102 to 107 so Bond's criterion s not rigorously applicable to the
present problem. Nonetheless, this part of Bond's analysis 18 of gualitative
valve here in that it calls attention to the fact that the development of in-
ternal circulations does hot depend on just the external Reynolds number, but
rather on the relative viscosity of the interior &nd the exterior fluids.

It is particularly necessary to keep this latter implication of Bond's
work clearly in mind in examining a number of experimental studies recently
carried out to determine, for chericsl engineering reasons, the nature of the
internal circulations occurring irside a heavy liguid drop falling through a
lighter liguid (Garner, 1950; Spells, 1952). Circulations were readily ob-
servable photographically in these sludics, Lul Lhey all conceérned situations

vherein there was only a very slight differcnce {n viscosity between the drop

l
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material and the ex‘<r nal medium, while in the cnse of a raindrop falling
through air the viscosity of the drop exceeds by two orders of magnitude that
of the surrounding medium., Hence, one must note weil that these recent studies
do not bear very close relation to the raindrop prcblem.

Richardson (1950) has wade some experimental studies of the breakup of
vater drcps falling from a tover 125 feet high and has suggested that their
breakup is due to the effects of internal circulaticn; but he appears to have
obtained no direct evidence to support this view., He did observe that drops
of a very viscous liguid (thickened methyl salicylate) resisted breakup far
more effectively than d1d water drops, and argued that this was due to their
resiatance to the develivpwent of internal circuletions. OCne must question
this interpretation on the ground that the increased viscoeity can, and in-
deed must, also play an lmportant role in suppreseing breakup by inhibiting
the rapid oscillaticns that probably initiate breakup in oversize drops
(Blanchard, 1950).

Blanchard (1949) attempted to observe internal circulations in vater drops
suspended in a vertical wind tunnel, He introduced fine particles of alumina
into the drops to serve as tracers in revealing internal motions, but reported
no evidence for any circulations. His observations may be inconclusive due to
the fact that his tracer particles might have been tco large ("300 microns and
under") to be carried alcng in currents of the order of centimeters per second.
Kinzer (unpublished) has observed very slow rolling motions inside drops con-
taining fine talc particles, but he estimated the velocities involved to be
less than a centimeter per second, which caa be shown to be too slow to have
appreciable centrifugal effect on drop shape.

Because of the iwportance of settling the gquestion of whether internal
circuletiions should be fmportant in the drop-shape problem, the writer has
sought a theoretical basis for cctimating the upper limit to the circulation

velocities tnat could devainp within s large drop fallirg at the experimentally
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established limiting speed of about 8 a ucc‘l. The analysis is basged upon
the #ollouwing assumptions:
(1) The shear stress is continuous across the weter-air interface,
(2) The condition of no slip holds, but the interfacial molecules of
vater and air drift together so slowly downstresm that as far as
the external flow dynamics are concerned, the surface air molecules'
speed wmay be aseumed to be negligibly small compared to the relative
alrspeed at infinity (8 m aec'l).
(3) The drop remains spherical, A corollary to this assumption 1s the
implication that the stream function inside the drop corresponds to
that of a spherical vortex,
Any exception to assumption (1) would imply finite shear stress acting on an
infinitesiual lamina of fluld, i.e,, infizile aceclerations would result
from any failure for this corndition to hold, so th!s flirt assumption is
above reproici., That the surface air velocity at the bese of the dbouvandary
‘layer may be regarded as 22ro compared to the falling speed of tﬁe 4arop
(assumption (2)) 1s an assumption that can only be tested a posteriori. It
vwill be shown below to be admissible, Assurption (3) is introduced to sim-
plify the aralysis even though it fails to hold in the case of interest here.
Hovever, depurtnre from sphsricity ought not have any large effect on the
chances for development of internal circulation since the experimental work
of Garner (1950) and Spells (1952) demonstrates that the type of vortices
predicted by Bond (1927) appear in highly deformed drops of liguid in liquid.
Assumption (3) simplifies the analysis primarily because of the corollary
implication concerning the nature of the internal stream function., For a
spherical drop the wvell known stream function for a sphericel vortex may be
used to determine the motion.

A stream function exists for simply kinematical reasons by virtue

of the continuity equation, and 8o holds whether the motion is irrotatioral
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or, as here, rotational, The general form of the stream function )" for any
ax{symnetric flow, when specilalized to the case of motion vithin a sptere,

reduces to the form

p = Ar=)" si” € (5

vhere A i{s a constant, & i{s the radius of the sphere, r is the radial
coordinate measured from the center of the sphere, and © i{s the meridional
coordinate measured fr-x a polar axis directed towards the pole of the
sphere towards wuich [luid moves along the polar axis, see Figure 3 and

Milne-Thomson (1949),

\ -~ ~._.-—Stagnation
\ point

__.—Represent-tive external
streamline

Flgure 3, Definition sketch of vortical circulation

i{naide a evhericel drop,

The constant A in (5) assuwes the value 3Uo/1432 for a spherical vortex in a
perfect fluid, where U, is the translation speed of the vortex center rela-
tive to the surrounding fluid, and assumes the valueluvo/haa(ﬂ'+,« ) for

a spherical vortex composed of a fluid of dynamic viscoeltyﬂ'mving very
elowly through a fluid of Jynamic viscosity/u (bond, 1927). Due to the par-
ticular way in which (5) will be used here, it will be u-mascessary to specify

A (which 18 comforting inacmuch us the raindrop case corresponis neiiter to
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the perfect fluid limit nor to the low Reynolds numbers treated by Bond).

The meridional valocity u' at a general r~int r, © is given by

u'(r, @)= 'Qj’) = A4 r-2d)i®
rG

hence

Lt - - e
u\/d, ’/‘2) 2 X A o (7)
Also, the velocity shear Just inside the surface of the sphere at its

vaist 1s, from (6),

] = §a A (8)
\Jr ,'a‘ F/Z
so, combining (7) and (8) to eliminate A, it follows that
/ L\ = Ju’ 9) ,
wia, mpz) = %’(ar‘ o, /> ( 1
and the problem of determining u' (a, 77/2) becomes that of finding Qu'/}r

at the same point. This can next be done with the aid of assumption (1).
Continuity of shear ptress across the vater-ai-~ interface requires
() ( )
8 r ‘A a
vhere the primed quantitics refer, as tefore, to the water and the unprimed

to air. Since ,U': 102// , one has

- ,,} t(

ou' ] a/ . (10}
or/a ™

The velocity shear in the boundary layer of air Just outside the drop is of

the order of ul/g wvhere u; 1s the local air cpeed relative to the sphere

at the outer limit of tke laminar boundary lager and § !s that layer's

radiel thickness. Since outside of tke boundary layer tne flcw at raindrop

Reynoids numbers will be essentially potentlal flow st leaast up to about
the waist of the d:op, and furthermore since to assume potential flow is to
bz conservative here {n the sense of admitting rat2er lerge weist velocities
in the afrfiow, uy is takzu as %.5U,, where U, in the rcindrop case is the
terminal falling velocity, On the other haud, to evaluate 5 , the boundary

layer theory of Tomotike (1935) will be utiiizzd, Towotika showed that for
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a point at about 80° from the forvard stagnation point of a sphere,

P |
S~ &81/20 va
A}
vhere )’ is the kinematic viscosity of the air und a {s the radius of the

(11)

sphere. For U, = § m sec “l apd a = 0.5 cm, S is found from (6) to be
about 0.05 cm. Eence, near the waist of such a large drop, Ju/3dr = “1/6 =
1200/0,05 sec™! = 2.4x10% eec-l, and then from (10) du'/Jr 240 sec”l.
Combining this last result with (9), one finde that u'(a, 7/2) 230
cm sec‘l. It 1s to be noted immedliately that since this speed is less than
3 per cent of the alr speed (12 m oec']') at the outer limit of the boundary
layer near the waist of a drop falling at the meximum speed of about 8 m

sec'1

, assumption (2) is rendered quite plausible a posteriori, If a saimi-
lar calculation is carried out for the wmore probable valve of 2,5 um for
the radius of a “large” drop, the circulation velocity at the waist is found
to be only about 20 cm sec-l,
The circulation intensity predicted by the above argument is substantial-
1y higher than that observed by Kinzer (in smaller drops), ard 1t will become
possible later in this paper to point oui a very good reason why the actual
eirculations fall to reach the intensity just predicted. However, since this
point will depend upon a deduction which hinges in part upon the negligibility
of internal clrculations, it 1s here neceseary to proceed to show that even a

surface motion of 30 cm sec’l

in a large drop vill not lead to internal pres-
sure gradients large enough to alter seriously the hydrostatic balance inside
the érop. Conslder tue radially invard force that wcould devcleop a2s a cen-
trifugal reaction to the here predicted vortical molion. The radii of curv-
ature of the trajectories of particles wmoving just inside the boundary of a
spherical vortex near its walet are neerly tdentical with the radius, a, of

the vortex boundary, as may be esaen in Figure 3. Since the speed of circula-

tion falls off rapidly inward ( W o& r°) aa one approaches the ring of
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stagnation points lying in aa equatorial circle at 0.7la from the axis, and
since furthermore the centrifugal reactica varies as the square of the cir-
culation velocity, one will obtain a reasonable order of magnitude estimate
of the centripetal force involved if he assumes ‘uat a lamina of radlal
thickness equal to about one-tenth of the distance from the surface to the
stagpation point moves meridionally near the waist with the predicted speed
of 30 cm sec”l tn a very large drop of 0.5 cu radius. The centripetal
force per unit aree acting on this lamina is found to be about 30 dyne cm™2,

This contribution to the internal pressure field {s only 10 per cent of the

surface tension contribution of about 300 dyne cm™? for a drop of this site,
and is a8 still smaller fraction of the hydrostatic pressure difference from
top to bottom of such a drop. For a drop of 0.25 cm radius one finds that

toe centrifugal pressuie effect represents a much smaller fra:tion of the i
surface tension incremcntal pressure, Bence it is ccncluded here that one

way neglect internal circulation within falling raindrops as a first approx-

imation, at least as far as such circulations might affect the shape of drops
in the range of sizes now known to occur in natural rain. This conclusion
vwill be strengthened in Section &, when the phenomenon of separation is dis-

cussed,

Aerodynamic pressure distribution. In the writer's opinion, all of the

factors carable of influencing drop shape, with the important exception of
the aerodynemic factor, have now been considered. The next logical step for
completing the drop-shape theory should thus be a direct evaluation of there
eerodynamic prcssure effects. Unfortunately, to carry out this last step
would be extremely difficult. Without belaboring this fairly obvious point,

it may be noted that the aerodynamic pressure distribution over the surface

of a drop falling through the air is itself determined by the very shape one
wishes to deduce. One could only proceed kere, in principle, by some method

of succeesive epproximations i{n which each aerodynamic pressure calculation

—_——-—d
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(based on the previous iterative approximaticn to the equilidrium shape)
would de used to deduce a modified shape consistent with the surface ten-
sion and hydrostatic pressure requirements, and then this new shape would
have to be used in lue next iteration of the aerodyneamic calculations, and
so on., Difficult as this would be, one might be ready to attempt it were
it not for the fact that there exists no general wethod for calculating
analytically the pressure pattern about an arbitrary surface, The method
of superposition of a suitable array of sources and sinks which is some-
times useful in treating the flow around revolutes ie only sufficiently
convergent to be practicable in the limit of very elongated revolutes such
as dirigidbles. To proceed with an {terative method in which each aerodynamic
calculation had to be performed graphically or numerically was one course
open to the writer; dbut he has inctesd chosen to proceed at this point upon
a different tack: neamely, to analyze a photograph of an actual drop of
known size and falling spesed in order to deducc these aerodynamic pressures

which wouid be so difficult to calculate directly.

3. Calculation of aerodynamic surface pressures

On the vasis of the discussions of drop morphology given in the preced-
ing Section, the writer adopts the following hypothesis: The equiiibrium
shape of a large drop, bearing at most a charge small compared to the limit-
ing value imposed by the dielectric strength of air and falling at terminal
velocity, is that particular skape fcr which the Joint action of the external
aercdynamic pressures and the surface pressure increments just produce an in-
ternal pressure distribution that satisfles the hydrostatic egquation within
the drop.

This hypothesis has led the writer to employ the following method for
calculeting the aerodynami~ally developed external surface pressures: Given

& photograph of a drop of known size and falling speed, one first calculates
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the stagnation pressure developed at the lower pole of the drop. It is
fortunately one of the well established facts of fluid dynamics that re-
gardless of almost all peculiarities of a given flow pattern about an ob-
Ject {mmersed in a fluid stream, the excess pressure developed at the °
leading stagnation point is Qeva vhere e e the fluid density and v is
the speed of the fluid far from the obJect, measured relative to that object.
Hence this firset step involves no approximations. Next one measures, on
the available photograph, toe radius of curvature R, of the drop surface
profile at the lower stagnation point. For reasons of axial symmetry, !
Ry = R, = R, at this point of the drop, i.e., the drop surface is locally

a portion of a sphere of radius R, st the stagnation point. Using this
measured radius in (1) ¢o compute A pg at the stagnation point, and adding

the result to the computed stagnation pressure, one obtains the pressure

prevailing just inside the dyop at its lower pole. Next, using tie hydro-
static equation, one may quickly determine the internal pressure py(z) at
any height r measured upwards along the wvertical axis of symmetry from zero \
at the lower pole. Then, as long es internal ciiculations produce only neg-

ligible internal pressure gradients, the presgure just inside the drop eur-

fece at heignt z 1s equal to that already determined for the point along the

axis at that height. Finally, if one can determine from the 3rop photograph

e

the values Ry{z) ana Rp(z), then (1)\can be used to compute N pg(z), and sub-

tracting tuis from py(z) ylelds pa(z), the external aerodynamically induced

pressure at height z.l
From the preceding discussion it can be seen that the success of this

method hinges upon being able to determine R)(z) and Ry(z) from a single side-

view photograph of a given drop. The technique for doing this turns out to

1‘Note that all pressures repiresent algebraic excesses over the prevailing
barometric pressure, and that the slight variation in the latter through tkLe
he ight interval spanned by the drop at any instani (s ignorable because it ie
only of the order of 10°3 times the internal hydrostatic presgsurs variation
in the same interval,
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One of the two principal radii, sey Ri(z), is simply the redius of
curvature of the meridional profile =2t the height z. This can be msasured
on a tracing made from an enlargement of a photograph of the vertical cross
section, such as the one shown here in Figure 1. One comstructs normsls to

the profile curve at each of & falrly dense series of points spaced regularly

along the profile (the writer used a 450-90° prism tangentometer in the deter-

mination of thess normals) and from these the values of Rl(z) can be deter-

uined by measuring the distance along the normal at ¢ to the point of inter-
section with the normml dravn from the rnext ad joining voint on the profile,
In Pigure 4 the distance R, for point P is shown as PC). By using an en-
largemwent factor of about 20 and by using a fairly dense set of points (fif-
teen in all) along the profile, it was found to be easy to achieve precision
of about 5 per cent in R,(z), as ascertainsd from repeated triala.

Ry(z) is even more eusily determined sinca this second principal radius,

Zor a surface of revolution, can be -hown2 to be siuply the distance from

the profile point at ¢ to the axis of revolution measured along the local
normel to the profile at z, In Pigure i, Ry is shown as the distance PCy.
The normals already constructed in the process of finding R(z) facilitate

rapid determination of R, (z).

°The writer s indebted to Dr. J. M. Keller of the Department of Physics,

. Iova State College, for examining and solving the problem in differential
geomstry that urderlies the technigue for determining the principal radif.
His solution is too lengthy to be reprodiiced here and the writer knows of
no published solution. However, subgsequert to Dr. Keller's solving this
problem, the writer came across a brief statement (Adem, 1949, p. 366) wtich
agrees vwith hies result and impliee that the game prcblem has been treated

previously.
W
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Figure i, Determination of R,(z) and Rp(z). Ffor point P,
Ry(z) = PC, and Ry(2) = PCp.

Having established a method for determining p,(z), there remains only

the guestion of avallability of suitable photographs. Since it 1is obvious
that satisfactory photographic resulte depend un using extremely high illum-
inationa to permit exceedingly short exposure times (order of 10~ sec), it
{6 not entirely surprising that the writer has found virtually no existing
photographs of either artificial or natural drops for vhich the falling speed
and drop size are accurately determined. In fact, the writer has succeeled
in obtaining only a single photograph fulfilling tbese requirements. This
photograph, reproduced here as Figure 1, was taken by Dr. Choji Magono of
the Hokkaido Imperial University, under conditiocns where boih terainal vel-
ocity and drop volume could be measured. All of the remaining d!scussion is
necessarily based upon this one photograph.

Since orly the equivalent spherical dlameter of the drop in Figure 1
vae known, the exact distance scale on the photograph had to be determined
rreliminarily. On a tracing of an eniargsmsnt of the photograph the cross-

sectional area of the drop was divided into a large number of horirontal

G S EONNNNNNNNNNNNNN,———__



-Gl

strips of equal vertical width Q\z. Next, for each such narrow strip, the
redial distance ry ves meacured from a point on the axis of revolution (mid-
vay between the upper and lower edges of the sirip) out to tae meridioomi
profile curve, Tben‘tho quantitiss ¢ rie At vere computed for each of the
entire series of strips and their sum egquated to the actual drop volume as
given by Magono. From this equality, the scale-factor of the enlargemsit
vas ascertained for use in coaverting all subsequently measured distances
on the photograph to true &istances.

Proceeding in the manner now fully ocutlined, the writer determined pg,(z)
for Magono's drop. The results are precented in Figure 5. To aid in identi-
fying the positions along the meridional profile where p, assumes certain
values of particular interest, five points (4 to E) are labeled on the pres-
sure curve and the locations of tauese points are indicated on the inset
sketch of the drop profile. The lower stagnation point ia subjected to an

2 {n excess of barometric pressure, bdut as

external pressure of 460 dyne cm”
the air accelerates in sweeping up uud aronnd the drop, toe surface pressure
falls, reaching & minimm of -590 dyne cm™2 near point C, just below the
point of maximun horirontal cross-sectioan. The pressures in the profile
interval C-D are less accurately determined than those for other loci since
here the profile's radius of curvature i{s changing quite rapidly and is very
small, By perforuing the measurements in this region five times and averag-
iug the results, the accepted values were found to deviate by about 10 per
ceat from thelr respective extremal values. As the air passes C the pressure
very suddenly risea to a local wmaximum at D and then falls off again very
slovly towards the upper pole at E, with a slight (and somevhat questlonable)
rise right at the pole,

If the airflow around this drop hed been potential flow, the stream-

lines would have closed in above the drop in such = way that the pressure

carve would have returned to positive values on the upper surface, ultimately
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attaining & value of 460 dyne ca™

at an upper stagnation point a2t E, That
the pressures are, instead, found to remsin negative (i.e., pressure less
than barometric pressure) vwill be shown, in the next section, to imply that
separation of the laminar boundary layer occurs in the flow around large

raindrops,

L. Discussion of results

To reviev the logic of the present study, it must be ncted that it has
not been found possible here to predict the aerodynamic pressure effects on
drop shape by proceeding directly from fundamsntal principles of fluid dynam-
ics; instead the aerodynamic pressures have been deduced from the writer's
hypothesis of drop shape., Therefore it follows that the test of the correct-
ness of the shape hypothesis must involve a comparisoa betwveen the results
shovn in Figure 5 and any availadle and pertinent experimental data,

It 1s understandabdle that the literature of experimental aerodynamics
does not contain any data on observed pressure patterns around odbJjects of
raindraop shape since this is a gquite ‘aususl shape, Furthermore, it would
not bz easy to set aboutr securing precisely the data desired because of tae
following considerations: If a "model” of & large raindrop vere to be fab-
ricated vith an array of static pressure orifices distributed over its sur-
face, the necessary internal tubing would probabiy preciude use of a @del
smaller than four or five centimeters in cross section, i.e., the model
vould have to be six or seven times larger than the prototype. To preserve
dynamic similarity betveen model and prototype in the Reynolds sense, the ex-
perimental velocity could be only cie-sixth or one-seventh of the prototype
velocity of fall (about 8 m aec'l) if air vere used as the model medium; but
at such lov airspeeds, the uncertainties in measurement of the slight static
pressure changes wculd pose rather serious obstacles to the success of the

experiment., To use vater as a2 medium can be seen to provide gome little
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advantage, since the kinematic viscosity of vater is only about one-tenth
that of air but the density is about a thousand iLimes that of air, so for

given Reynolds number, the preessure effects vould be ten times greater in

-_—-—--mraﬂ' Bt

vater than in air. If any such model studies wvere tc dbe undertaken, one
vould probably chcose to use alr, employ a conveniently large drop model,
and then sacrifice dynamic similitude in order to get at least a rough no-
tion of the behavior of the flow. The vriter has not contemplated doing
this himself, but the results would be of considerable interest.

In viev of the lack of precisely the type cf obssrvational data needed

for compariscr vwith the present results, it becomes a next-best substitute
to use data on spheres, Even for spheres one finds gap in the oxperimental
results for Reynolds numbers lyirng between the upper limit of the Stokes law
rangs and the lower limit of the region of critical Reynolds numbers for
transition to a turbulent boundary layer. Drag date were found to be abund- P!
ant for the entire range, but not surface pressure data. Thne it finally
became necessery mevely to look at pressure profiles for spheres at Reynolds

numbers of the order of 107 (Fage, 1937), despite the fact that Magono's drop

fell with a Reynolds number of only about 4x107,
Two of Fage's curves for the profile around a sphere (for Re® 2,5x107
and fe %1.6x107) are plotted here in Figure 6. The similarities betveen

these curves and that of Figure 5 are sufficient to provide considerable as-

To il b oy o

surance that the present drop-shape hypothesis is at least fairly close to
the truth. The pressures around the downstream hemisphere of Fage's sphere,

like those deduced here for the upper surface of Magono's irop, fail to re.-

e e e A s~ P

turn to poaitive values (as do the pressures in potential flow, dotted curve
of Figure 6) after starting to rise fairly rapidly just ashead of the region
of maximum cross section. Now it is well known that thie feature, in curves
such as those of Figure 6. 18 due to the occurrence of separation in the

boundary layer. AU Reynolds numbers belcw those for vhich the boundary layer
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becomes turbuient (a.zuno’) but atove the Stokes lav range (Re4’l), the
streazlinaes fail to close in downstream from the uphere and by this fallure
to creatz & downstream stagnation point the pressuyres remin lov downstream
from ths zone of separation., Separation may be inhibited by fairing cut the
i downstream portion of a body into e gently tapering form, but in bodies of

. large curvature aft (e.g., a deformed raindrop) separation is known to be
easily established, The fact that the pressures deduced bere for Magono's

drop do exhibit this behavior may be regarded, then, as constituting fairly
strong evidence in favor of the shape hypothesis used to deteruine these i
pressures., In still further support of this conclusion there exist two ex-

o 1 ek

perimental ocbservations on actual vater drops vhich will next be shown to
de guite consistent vith the present deduction of separation in the airflow
around large raindrops.

| First, Gunn (1949) has reporte? a curious tendency for drops of oms
certain eize (about 0.5 wm redius) to undergo marked sideslipping as they

fall. Gunn has shown very convincingly that this aust be due to a resonance

phenomenon involving the natural frequency of mechanical oscilletion of the
drops and the freguency with which eddies are shed from the upper surface of
thia falling drop. Gunn invoked Moeller's (1938) extensive results on eddy
frequencies for srheres to show that a sphere of 0.5 um radius sheds 2ddies
at a freguency of about 300 cps, almost exactly the natural frequency of

| ellipsoidal vidratioa of a vater sphere of that size, Qunxn's detection of

{ this eddying phenomenon conetitutes clear evidence of separation, since

l eddies cean only be shed from a "deadwater' region bounded by a separating

! stream surface extending dovnstream from the given object, Murthermore,
Qunn's observations concerned a drop-sizc much smaller than the one here i
analyzed; so at tke much higher Reynclds number at which Magono's drop fell, I
separation should almost certainly be expected (and tiic the more so because

of the sharper curvature cn the upper surface of the larger anl more flat-
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tened arop).

Second, Blunchard (1950) reported that when ons drop of appropriate
slze 18 inserted into the airstream above another drop which is serodymam-
{~ally suspended in a verticsl airstreaw, the upper descends upon the lower
along a peculiar spiral path. Winny (1932) bhas, by means of photographs of
the flow behind spheree at which separation was occurring, illustrated vhat
appeared to be a spiral eddy pattern in the interval Rex2x10° to 8&x10°, so
Blanchard's observations may be taken es further evidence for separation in

the flow around vater drops. A very complete discussion of the gake phenom-

ena behind solid spheres has been given by Moeller (1538}, who concluded that
separation first appears at about Re =150 and that periodic eddy detachment
begins at about Re = 450 for solid spueres, For a somewhat deformed drops,
these phenomena would be expected to appear at somevhat lower Reynolds num-
ters,

In all, there seems to be very gcod reason for beiieving that separation
occurs in the airfiow around all raindrops with dlameters areater than about

0.5 - 1,0 mm, Since the present shape hypothesis has led to the deduction of

e pressure profile of a type entirely different from that obtained with po- ’
tential flow (see dotted curve, Figure 6) but quite similar to that character-
{stic of viscous flow at higk Reynolds number (separating boundary layer),

there would appear to be sufficteni ground for accepting the shape hypothesis

adopted here.

5. Iwmplications of separation

It should be emphasized that the calculation of pe(z) for Magono's drop

88 cuat are L

has interest not only in that it provides a check on the present theory of
drop shape, but also in that 1t focuses attention on the phenomenon of separ-
ation itself., Gunn's (194G) observations imply that this phenomenon is al-

ready vell established in flow asbout raindrops of moual =lze /1 on dlameiler)
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falling at Reynclds numbers of less than 500, which finding is in good agree-
zent with Moe=ller'es work or solid spheres, Hence separation appears to be a
phenomsnon to be reckoned with in any theory of microphysical processes in-
volving raindrops. The kinematics of ion deposition on failing raindrops,
for example, must be admitted to be affected to some extent by the failure
for simple potential flow to occur on the upper surfaces of drope. Aral-
yses of heat and water vapor transfer to or {rom water drops must take sep-
aration into account., As Blanchard has found experimentally, the dynamice
of a "fall-on" collialon between two érops will be sensibly affected by the
existence of a pulsatory wake set up behind a drop about which the flow'is
undergoing separation, Finally, the eize-dependence of the terminal velocity
of raindrops must be largely due to the well esteblished effect of separation
on form drag. For Reynolds numbers in the approximate interval 101 to 105,
the drag coefficient of a sphere is nearly constant because in this range
form drag (due to the presence of a deadwater region) rather than skin fric-
tion dreg is of controlling importance, and separation produces a deadwater
regiocn vhose dimensic o remain roughly independent of Reynolds number until
the latter reaches the critical transition value (meteorologically (uzat-
tatnable for rairdrops, whlch break up well bslow Re,). Altogciher, the ef-
fects due to separation, whose existence in raindrop aerodynamics seexms quite
clearly indicated, must constitute a significant factor in the physics of rain.
The detection of separation sheds further interesting light on the rea-
sons for the probable non-existence of appreciable internal circulation in-
side raindrops. The skin-friction drag at the surface of & liguid drop about
which the flow undergoes saparation is markedly less favoreble to the estad-
lishment of internal circulation of the spherical vortex type than is the
skin-friction drag in the non-separatinz cece. Starting from a zero valne
at the lower stagnation point, the downstream drag of air on water must

reach i{ts maxiwum value well forward of the separation point and then nust

v
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fall once more to zero at the separation point where, by defiziticn, there
exists & zero radial velocity shear right at the drop surface (see Qoldstein,
1938, and the suggested flow pattern of Figure 7). Then, dovnstream from

the separation pecint,

~"" Reversed flow
in deadvater
region from
which eddiss
are period-
ically shed

- Stagnation
point

Figure 7. Suggested flow pattern around a large

ralndrop when separation occurs.

there will tend to exist a ring vortex of reversed circulation concentric
with the symmetry axie of the drop. The presence of such a circulation over
the upper portiou of the drop surface will serve to cut down any inc:iplent
interna) vortical circulations that do tend to become establi~hred by the drag
forces acting over the lower surface of the drop. Hence, once one has recog-

nized that separation is characteristic of the flow arc.ud raindrops, he Las
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availabls & very strong basis for predicting that notking iike a spherical
vortex of the Bond type will occur within larges drops, for there simply does
not exist & sustained downstream tugging of surface alr on surfacewater over
the entire surface of the drop. This argument could not, of courre, logicslly
be used earlier, since to assume separation from the start wvould be to postu-
late the very phenomenon vhose theoretical deduction has here constituted the
best avallable test of the working hypothesis for drop shape. Furthermore,
at the time that the writer vas still striving to settle the question of the
existence or non-existence of internal circulations he vas not yet avare of
the experimental i{ndications that separation occurs in the flow around drops.
In the analysis of internal circulations carried out above (Section 2) a
surface circulation speed of about 30 cm sec-! vas predicted. That thie re-
sult is substantially too large to agree wvith the observations of Blanchard
and of Kinzer is now understandable in retrospect, for in that analysis it
vas tacitly assvmeld Cuat tLs curfacs ais flow is favorsble to generation of
a vortical circulation everywhere over the surface of a drcp. In reality,
the opposing influences of frictional drag at lover and upper surfaces of a
drop must be expected to prevent such strong circulation from developing.
Finally, it 1a to be noted that separation appears to be responsidble for
the asymmetry of a large raindrop with respect to a horizontal plane tarough
its center, It vas pointed cut in Section 2 above that if only surface ten-
sion and hydrostatic pressure effects controlled drop shape, these would pro-
duce drops vwith rounded bcitcas and rather flattened tops. However, because
a stagnation point inevitadbly occurs at the lower pole, while one cannot de-
velop at the upper pole because of separation of the boundary layer, it fol-
lcws that the lovwer aerodynamic pressures over the upper surface demand an
appreciable larger [\pg there than on “he unéersids, {.e., the curvatura of

the upper surface must bc greater in order to satisy the requirem:nt of in-

ternal hydirostatic equilibrium in the face of the considerabl.e aerodynamic
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pressure difference on upper an2 lover surfaces, Hence the drop becomes
rounded on the top but flattened on the dottom, as revealed by photographs.
This asymmetry of large drops, rather well accounted for on the present drop-
snape hypothesis, was not explained by either ILenard (1904 ) nor Spilhaus
(1948) in their studies of drop morphology.

6. Summary

A review of previous efforts to understand the peculiar deformation
characteristic of large raindrops revealed that little has been done in the
past to clarify this problem. The factors of surface tension, hydrostatic
pressurz gradients, external aerodynemic pressures, electrostatic charge,
and internal circulations wvere examined quantitatively and only the first
three of these were found to be significant i{n controlling drop shape,
Adopting tie hypothesis that the equilibrium shape of a raindrop falling at
teruinal velocity is that for vhich the aerodynamic pressures and the surface
tension pressure increments comspire to Just produce an iaternal pressure
pattern satisfying toe hydrostaiic equation, it was found possible, by anal-
yeing a single drcp photograph to deduce the aerodynamic pressure profile
along a meridian of the drop. This profile revealed clear evidence of separ-
ation of the iaminar boundary layer in the airflow around the drop. Since
separation effects could «lso be shown to exist in certain experimental ob-
servations, it has been concluded tha®t the woirking nypotheels for drop chape
has been successful in explaining tke long-recognized deformation of large
raindrops., A number of implications of separation vere pointed cut gquelita-
tively, and it was nuted that the distribution of skin-friction drag over the
surface of 2 raindrop at which separation occurs is decidedly unfavoreble to

the generation of interral vortical circulation.

7. Suggeations for future research

That the writer has only succeeded in securing a8 zingle drop ptotograph
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sultable for the present type of analysis is regrettablsa., In the past, pre-
sumably, there has been little occasion for obtaining such difficult photo-
graphs under conditions where drop esire and fellirg speed could be dsters
mined accurateiy. However, it nov seems very desirable for the experimental-
ist to obtain a set of such photographs over the whole Grop-size range of
meteorologicel irterest in order that a complete picture of the flow regions
characteristic of the various drop sizes may be delineated by the wethod
developed ucre, Such information should prove very ueeful in extending pres-
ent theories of heat and vapor transfer to and from raindrops.

Secondly, since the present study is regarded by the writer as only a
first step towards the wmore significant cobjective of understanding the breakup
of large raindrops, he wishes to take this opportunity to urge extension of

the sort of laboratory studies 3o well begun by Blanchard (1950). The wealth

of intriguing questions raised by Slanchard's work and the light that could
potentially be sued on the dynamics of drop breakup by further studies of

this sort make a continuation of the research most desiradble, In this con-

nection attention ia called ¢n a b
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work by McDons 4 (1951), where a niumber of suggestions for improving this type
of study have been offered.

Finally, 1t would still be desirabtle to have more conclusive expexrimental
data on the intensities of internal circulation in water drops of variour
slzes. For drops Just below the size Por which sepcration first appears
(probably around 0.5 mwm diameter) it may be possible that circulation is act-
ually better developed than for larger drops ci whcse upper surface a re -

versed i.iow develops.
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